Beispiel #1
0
def test_usage_off():
    old_environ = dict(os.environ)
    test_usage_id = str(uuid.uuid4())
    os.environ["FEAST_IS_USAGE_TEST"] = "True"
    os.environ["FEAST_USAGE"] = "False"
    os.environ["FEAST_FORCE_USAGE_UUID"] = test_usage_id

    with tempfile.TemporaryDirectory() as temp_dir:
        test_feature_store = FeatureStore(
            config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="fake_project",
                provider="local",
                online_store=SqliteOnlineStoreConfig(
                    path=os.path.join(temp_dir, "online.db")
                ),
            )
        )
        entity = Entity(
            name="driver_car_id",
            description="Car driver id",
            value_type=ValueType.STRING,
            labels={"team": "matchmaking"},
        )
        test_feature_store.apply([entity])

        os.environ.clear()
        os.environ.update(old_environ)
        sleep(30)
        rows = read_bigquery_usage_id(test_usage_id)
        assert rows.total_rows == 0
Beispiel #2
0
def prep_local_fs_and_fv() -> Iterator[Tuple[FeatureStore, FeatureView]]:
    with tempfile.NamedTemporaryFile(suffix=".parquet") as f:
        df = create_dataset()
        f.close()
        df.to_parquet(f.name)
        file_source = FileSource(
            file_format=ParquetFormat(),
            file_url=f"file://{f.name}",
            event_timestamp_column="ts",
            created_timestamp_column="created_ts",
            date_partition_column="",
            field_mapping={"ts_1": "ts", "id": "driver_id"},
        )
        fv = get_feature_view(file_source)
        e = Entity(
            name="driver",
            description="id for driver",
            join_key="driver_id",
            value_type=ValueType.INT32,
        )
        with tempfile.TemporaryDirectory() as repo_dir_name, tempfile.TemporaryDirectory() as data_dir_name:
            config = RepoConfig(
                registry=str(Path(repo_dir_name) / "registry.db"),
                project=f"test_bq_correctness_{str(uuid.uuid4()).replace('-', '')}",
                provider="local",
                online_store=SqliteOnlineStoreConfig(
                    path=str(Path(data_dir_name) / "online_store.db")
                ),
            )
            fs = FeatureStore(config=config)
            fs.apply([fv, e])

            yield fs, fv
Beispiel #3
0
def test_usage_on(dummy_exporter, enabling_toggle):
    _reload_feast()
    from feast.feature_store import FeatureStore

    with tempfile.TemporaryDirectory() as temp_dir:
        test_feature_store = FeatureStore(config=RepoConfig(
            registry=os.path.join(temp_dir, "registry.db"),
            project="fake_project",
            provider="local",
            online_store=SqliteOnlineStoreConfig(
                path=os.path.join(temp_dir, "online.db")),
        ))
        entity = Entity(
            name="driver_car_id",
            description="Car driver id",
            value_type=ValueType.STRING,
            tags={"team": "matchmaking"},
        )

        test_feature_store.apply([entity])

        assert len(dummy_exporter) == 3
        assert {
            "entrypoint":
            "feast.infra.local.LocalRegistryStore.get_registry_proto"
        }.items() <= dummy_exporter[0].items()
        assert {
            "entrypoint":
            "feast.infra.local.LocalRegistryStore.update_registry_proto"
        }.items() <= dummy_exporter[1].items()
        assert {
            "entrypoint": "feast.feature_store.FeatureStore.apply"
        }.items() <= dummy_exporter[2].items()
Beispiel #4
0
def feature_store_with_local_registry():
    fd, registry_path = mkstemp()
    fd, online_store_path = mkstemp()
    return FeatureStore(config=RepoConfig(
        registry=registry_path,
        project="default",
        provider="local",
        online_store=SqliteOnlineStoreConfig(path=online_store_path),
    ))
Beispiel #5
0
def test_apply_remote_repo():
    fd, registry_path = mkstemp()
    fd, online_store_path = mkstemp()
    return FeatureStore(config=RepoConfig(
        registry=registry_path,
        project="default",
        provider="local",
        online_store=SqliteOnlineStoreConfig(path=online_store_path),
    ))
    def _build_feast_feature_store(self):
        os.environ["FEAST_S3_ENDPOINT_URL"] = aws.S3_ENDPOINT.get()
        os.environ["AWS_ACCESS_KEY_ID"] = aws.S3_ACCESS_KEY_ID.get()
        os.environ["AWS_SECRET_ACCESS_KEY"] = aws.S3_SECRET_ACCESS_KEY.get()

        config = RepoConfig(
            registry=f"s3://{self.config.s3_bucket}/{self.config.registry_path}",
            project=self.config.project,
            # Notice the use of a custom provider.
            provider="custom_provider.provider.FlyteCustomProvider",
            offline_store=FileOfflineStoreConfig(),
            online_store=SqliteOnlineStoreConfig(path=self.config.online_store_path),
        )
        return FeastFeatureStore(config=config)
Beispiel #7
0
def test_usage_off(dummy_exporter, enabling_toggle):
    enabling_toggle.__bool__.return_value = False

    _reload_feast()
    from feast.feature_store import FeatureStore

    with tempfile.TemporaryDirectory() as temp_dir:
        test_feature_store = FeatureStore(config=RepoConfig(
            registry=os.path.join(temp_dir, "registry.db"),
            project="fake_project",
            provider="local",
            online_store=SqliteOnlineStoreConfig(
                path=os.path.join(temp_dir, "online.db")),
        ))
        entity = Entity(
            name="driver_car_id",
            description="Car driver id",
            value_type=ValueType.STRING,
            tags={"team": "matchmaking"},
        )
        test_feature_store.apply([entity])

        assert not dummy_exporter
def prep_redshift_fs_and_fv(
    source_type: str, ) -> Iterator[Tuple[FeatureStore, FeatureView]]:
    client = aws_utils.get_redshift_data_client("us-west-2")
    s3 = aws_utils.get_s3_resource("us-west-2")

    df = create_dataset()

    table_name = f"test_ingestion_{source_type}_correctness_{int(time.time_ns())}_{random.randint(1000, 9999)}"

    offline_store = RedshiftOfflineStoreConfig(
        cluster_id="feast-integration-tests",
        region="us-west-2",
        user="******",
        database="feast",
        s3_staging_location=
        "s3://feast-integration-tests/redshift/tests/ingestion",
        iam_role="arn:aws:iam::402087665549:role/redshift_s3_access_role",
    )

    aws_utils.upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{table_name}.parquet",
        offline_store.iam_role,
        table_name,
        df,
    )

    redshift_source = RedshiftSource(
        table=table_name if source_type == "table" else None,
        query=f"SELECT * FROM {table_name}"
        if source_type == "query" else None,
        event_timestamp_column="ts",
        created_timestamp_column="created_ts",
        date_partition_column="",
        field_mapping={
            "ts_1": "ts",
            "id": "driver_id"
        },
    )

    fv = driver_feature_view(redshift_source)
    e = Entity(
        name="driver",
        description="id for driver",
        join_key="driver_id",
        value_type=ValueType.INT32,
    )
    with tempfile.TemporaryDirectory(
    ) as repo_dir_name, tempfile.TemporaryDirectory() as data_dir_name:
        config = RepoConfig(
            registry=str(Path(repo_dir_name) / "registry.db"),
            project=f"test_bq_correctness_{str(uuid.uuid4()).replace('-', '')}",
            provider="local",
            online_store=SqliteOnlineStoreConfig(
                path=str(Path(data_dir_name) / "online_store.db")),
            offline_store=offline_store,
        )
        fs = FeatureStore(config=config)
        fs.apply([fv, e])

        yield fs, fv

        fs.teardown()

    # Clean up the uploaded Redshift table
    aws_utils.execute_redshift_statement(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        f"DROP TABLE {table_name}",
    )
Beispiel #9
0
def test_historical_features_from_bigquery_sources(provider_type,
                                                   infer_event_timestamp_col,
                                                   capsys):
    start_date = datetime.now().replace(microsecond=0, second=0, minute=0)
    (
        customer_entities,
        driver_entities,
        end_date,
        orders_df,
        start_date,
    ) = generate_entities(start_date, infer_event_timestamp_col)

    bigquery_dataset = (
        f"test_hist_retrieval_{int(time.time_ns())}_{random.randint(1000, 9999)}"
    )

    with BigQueryDataSet(bigquery_dataset), TemporaryDirectory() as temp_dir:
        gcp_project = bigquery.Client().project

        # Orders Query
        table_id = f"{bigquery_dataset}.orders"
        stage_orders_bigquery(orders_df, table_id)
        entity_df_query = f"SELECT * FROM {gcp_project}.{table_id}"

        # Driver Feature View
        driver_df = driver_data.create_driver_hourly_stats_df(
            driver_entities, start_date, end_date)
        driver_table_id = f"{gcp_project}.{bigquery_dataset}.driver_hourly"
        stage_driver_hourly_stats_bigquery_source(driver_df, driver_table_id)
        driver_source = BigQuerySource(
            table_ref=driver_table_id,
            event_timestamp_column="datetime",
            created_timestamp_column="created",
        )
        driver_fv = create_driver_hourly_stats_feature_view(driver_source)

        # Customer Feature View
        customer_df = driver_data.create_customer_daily_profile_df(
            customer_entities, start_date, end_date)
        customer_table_id = f"{gcp_project}.{bigquery_dataset}.customer_profile"

        stage_customer_daily_profile_bigquery_source(customer_df,
                                                     customer_table_id)
        customer_source = BigQuerySource(
            table_ref=customer_table_id,
            event_timestamp_column="datetime",
            created_timestamp_column="",
        )
        customer_fv = create_customer_daily_profile_feature_view(
            customer_source)

        driver = Entity(name="driver",
                        join_key="driver_id",
                        value_type=ValueType.INT64)
        customer = Entity(name="customer_id", value_type=ValueType.INT64)

        if provider_type == "local":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="default",
                provider="local",
                online_store=SqliteOnlineStoreConfig(path=os.path.join(
                    temp_dir, "online_store.db"), ),
                offline_store=BigQueryOfflineStoreConfig(
                    type="bigquery", dataset=bigquery_dataset),
            ))
        elif provider_type == "gcp":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="".join(
                    random.choices(string.ascii_uppercase + string.digits,
                                   k=10)),
                provider="gcp",
                offline_store=BigQueryOfflineStoreConfig(
                    type="bigquery", dataset=bigquery_dataset),
            ))
        elif provider_type == "gcp_custom_offline_config":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="".join(
                    random.choices(string.ascii_uppercase + string.digits,
                                   k=10)),
                provider="gcp",
                offline_store=BigQueryOfflineStoreConfig(type="bigquery",
                                                         dataset="foo"),
            ))
        else:
            raise Exception(
                "Invalid provider used as part of test configuration")

        store.apply([driver, customer, driver_fv, customer_fv])

        event_timestamp = (DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                           if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                           in orders_df.columns else "e_ts")
        expected_df = get_expected_training_df(
            customer_df,
            customer_fv,
            driver_df,
            driver_fv,
            orders_df,
            event_timestamp,
        )

        job_from_sql = store.get_historical_features(
            entity_df=entity_df_query,
            feature_refs=[
                "driver_stats:conv_rate",
                "driver_stats:avg_daily_trips",
                "customer_profile:current_balance",
                "customer_profile:avg_passenger_count",
                "customer_profile:lifetime_trip_count",
            ],
        )

        start_time = datetime.utcnow()
        actual_df_from_sql_entities = job_from_sql.to_df()
        end_time = datetime.utcnow()
        with capsys.disabled():
            print(
                str(f"\nTime to execute job_from_sql.to_df() = '{(end_time - start_time)}'"
                    ))

        assert sorted(expected_df.columns) == sorted(
            actual_df_from_sql_entities.columns)
        assert_frame_equal(
            expected_df.sort_values(
                by=[event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
            actual_df_from_sql_entities[expected_df.columns].sort_values(
                by=[event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
            check_dtype=False,
        )

        table_from_sql_entities = job_from_sql.to_arrow()
        assert_frame_equal(actual_df_from_sql_entities,
                           table_from_sql_entities.to_pandas())

        timestamp_column = ("e_ts" if infer_event_timestamp_col else
                            DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL)

        entity_df_query_with_invalid_join_key = (
            f"select order_id, driver_id, customer_id as customer, "
            f"order_is_success, {timestamp_column}, FROM {gcp_project}.{table_id}"
        )
        # Rename the join key; this should now raise an error.
        assertpy.assert_that(store.get_historical_features).raises(
            errors.FeastEntityDFMissingColumnsError).when_called_with(
                entity_df=entity_df_query_with_invalid_join_key,
                feature_refs=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
            )

        job_from_df = store.get_historical_features(
            entity_df=orders_df,
            feature_refs=[
                "driver_stats:conv_rate",
                "driver_stats:avg_daily_trips",
                "customer_profile:current_balance",
                "customer_profile:avg_passenger_count",
                "customer_profile:lifetime_trip_count",
            ],
        )

        # Rename the join key; this should now raise an error.
        orders_df_with_invalid_join_key = orders_df.rename(
            {"customer_id": "customer"}, axis="columns")
        assertpy.assert_that(store.get_historical_features).raises(
            errors.FeastEntityDFMissingColumnsError).when_called_with(
                entity_df=orders_df_with_invalid_join_key,
                feature_refs=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
            )

        # Make sure that custom dataset name is being used from the offline_store config
        if provider_type == "gcp_custom_offline_config":
            assertpy.assert_that(job_from_df.query).contains("foo.entity_df")
        else:
            assertpy.assert_that(
                job_from_df.query).contains(f"{bigquery_dataset}.entity_df")

        start_time = datetime.utcnow()
        actual_df_from_df_entities = job_from_df.to_df()
        end_time = datetime.utcnow()
        with capsys.disabled():
            print(
                str(f"Time to execute job_from_df.to_df() = '{(end_time - start_time)}'\n"
                    ))

        assert sorted(expected_df.columns) == sorted(
            actual_df_from_df_entities.columns)
        assert_frame_equal(
            expected_df.sort_values(
                by=[event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
            actual_df_from_df_entities[expected_df.columns].sort_values(
                by=[event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
            check_dtype=False,
        )
        table_from_df_entities = job_from_df.to_arrow()
        assert_frame_equal(actual_df_from_df_entities,
                           table_from_df_entities.to_pandas())
Beispiel #10
0
def test_historical_features_from_parquet_sources(infer_event_timestamp_col):
    start_date = datetime.now().replace(microsecond=0, second=0, minute=0)
    (
        customer_entities,
        driver_entities,
        end_date,
        orders_df,
        start_date,
    ) = generate_entities(start_date, infer_event_timestamp_col)

    with TemporaryDirectory() as temp_dir:
        driver_df = driver_data.create_driver_hourly_stats_df(
            driver_entities, start_date, end_date)
        driver_source = stage_driver_hourly_stats_parquet_source(
            temp_dir, driver_df)
        driver_fv = create_driver_hourly_stats_feature_view(driver_source)
        customer_df = driver_data.create_customer_daily_profile_df(
            customer_entities, start_date, end_date)
        customer_source = stage_customer_daily_profile_parquet_source(
            temp_dir, customer_df)
        customer_fv = create_customer_daily_profile_feature_view(
            customer_source)
        driver = Entity(name="driver",
                        join_key="driver_id",
                        value_type=ValueType.INT64)
        customer = Entity(name="customer_id", value_type=ValueType.INT64)

        store = FeatureStore(config=RepoConfig(
            registry=os.path.join(temp_dir, "registry.db"),
            project="default",
            provider="local",
            online_store=SqliteOnlineStoreConfig(
                path=os.path.join(temp_dir, "online_store.db")),
        ))

        store.apply([driver, customer, driver_fv, customer_fv])

        job = store.get_historical_features(
            entity_df=orders_df,
            feature_refs=[
                "driver_stats:conv_rate",
                "driver_stats:avg_daily_trips",
                "customer_profile:current_balance",
                "customer_profile:avg_passenger_count",
                "customer_profile:lifetime_trip_count",
            ],
        )

        actual_df = job.to_df()
        event_timestamp = (DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                           if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                           in orders_df.columns else "e_ts")
        expected_df = get_expected_training_df(
            customer_df,
            customer_fv,
            driver_df,
            driver_fv,
            orders_df,
            event_timestamp,
        )
        assert_frame_equal(
            expected_df.sort_values(
                by=[event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
            actual_df.sort_values(
                by=[event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
        )
def test_historical_features_from_redshift_sources(provider_type,
                                                   infer_event_timestamp_col,
                                                   capsys, full_feature_names):
    client = aws_utils.get_redshift_data_client("us-west-2")
    s3 = aws_utils.get_s3_resource("us-west-2")

    offline_store = RedshiftOfflineStoreConfig(
        cluster_id="feast-integration-tests",
        region="us-west-2",
        user="******",
        database="feast",
        s3_staging_location=
        "s3://feast-integration-tests/redshift/tests/ingestion",
        iam_role="arn:aws:iam::402087665549:role/redshift_s3_access_role",
    )

    start_date = datetime.now().replace(microsecond=0, second=0, minute=0)
    (
        customer_entities,
        driver_entities,
        end_date,
        orders_df,
        start_date,
    ) = generate_entities(start_date, infer_event_timestamp_col)

    redshift_table_prefix = (
        f"test_hist_retrieval_{int(time.time_ns())}_{random.randint(1000, 9999)}"
    )

    # Stage orders_df to Redshift
    table_name = f"{redshift_table_prefix}_orders"
    entity_df_query = f"SELECT * FROM {table_name}"
    orders_context = aws_utils.temporarily_upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{table_name}.parquet",
        offline_store.iam_role,
        table_name,
        orders_df,
    )

    # Stage driver_df to Redshift
    driver_df = driver_data.create_driver_hourly_stats_df(
        driver_entities, start_date, end_date)
    driver_table_name = f"{redshift_table_prefix}_driver_hourly"
    driver_context = aws_utils.temporarily_upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{driver_table_name}.parquet",
        offline_store.iam_role,
        driver_table_name,
        driver_df,
    )

    # Stage customer_df to Redshift
    customer_df = driver_data.create_customer_daily_profile_df(
        customer_entities, start_date, end_date)
    customer_table_name = f"{redshift_table_prefix}_customer_profile"
    customer_context = aws_utils.temporarily_upload_df_to_redshift(
        client,
        offline_store.cluster_id,
        offline_store.database,
        offline_store.user,
        s3,
        f"{offline_store.s3_staging_location}/copy/{customer_table_name}.parquet",
        offline_store.iam_role,
        customer_table_name,
        customer_df,
    )

    with orders_context, driver_context, customer_context, TemporaryDirectory(
    ) as temp_dir:
        driver_source = RedshiftSource(
            table=driver_table_name,
            event_timestamp_column="event_timestamp",
            created_timestamp_column="created",
        )
        driver_fv = create_driver_hourly_stats_feature_view(driver_source)

        customer_source = RedshiftSource(
            table=customer_table_name,
            event_timestamp_column="event_timestamp",
            created_timestamp_column="created",
        )
        customer_fv = create_customer_daily_profile_feature_view(
            customer_source)

        driver = Entity(name="driver",
                        join_key="driver_id",
                        value_type=ValueType.INT64)
        customer = Entity(name="customer_id", value_type=ValueType.INT64)

        if provider_type == "local":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="default",
                provider="local",
                online_store=SqliteOnlineStoreConfig(path=os.path.join(
                    temp_dir, "online_store.db"), ),
                offline_store=offline_store,
            ))
        elif provider_type == "aws":
            store = FeatureStore(config=RepoConfig(
                registry=os.path.join(temp_dir, "registry.db"),
                project="".join(
                    random.choices(string.ascii_uppercase + string.digits,
                                   k=10)),
                provider="aws",
                online_store=DynamoDBOnlineStoreConfig(region="us-west-2"),
                offline_store=offline_store,
            ))
        else:
            raise Exception(
                "Invalid provider used as part of test configuration")

        store.apply([driver, customer, driver_fv, customer_fv])

        try:
            event_timestamp = (DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                               if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL
                               in orders_df.columns else "e_ts")
            expected_df = get_expected_training_df(
                customer_df,
                customer_fv,
                driver_df,
                driver_fv,
                orders_df,
                event_timestamp,
                full_feature_names,
            )

            job_from_sql = store.get_historical_features(
                entity_df=entity_df_query,
                features=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
                full_feature_names=full_feature_names,
            )

            start_time = datetime.utcnow()
            actual_df_from_sql_entities = job_from_sql.to_df()
            end_time = datetime.utcnow()
            with capsys.disabled():
                print(
                    str(f"\nTime to execute job_from_sql.to_df() = '{(end_time - start_time)}'"
                        ))

            assert sorted(expected_df.columns) == sorted(
                actual_df_from_sql_entities.columns)
            assert_frame_equal(
                expected_df.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                actual_df_from_sql_entities[expected_df.columns].sort_values(
                    by=[
                        event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
                check_dtype=False,
            )

            table_from_sql_entities = job_from_sql.to_arrow()
            assert_frame_equal(
                actual_df_from_sql_entities.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                table_from_sql_entities.to_pandas().sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
            )

            timestamp_column = ("e_ts" if infer_event_timestamp_col else
                                DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL)

            entity_df_query_with_invalid_join_key = (
                f"select order_id, driver_id, customer_id as customer, "
                f"order_is_success, {timestamp_column} FROM {table_name}")
            # Rename the join key; this should now raise an error.
            assertpy.assert_that(
                store.get_historical_features(
                    entity_df=entity_df_query_with_invalid_join_key,
                    features=[
                        "driver_stats:conv_rate",
                        "driver_stats:avg_daily_trips",
                        "customer_profile:current_balance",
                        "customer_profile:avg_passenger_count",
                        "customer_profile:lifetime_trip_count",
                    ],
                ).to_df).raises(errors.FeastEntityDFMissingColumnsError
                                ).when_called_with()

            job_from_df = store.get_historical_features(
                entity_df=orders_df,
                features=[
                    "driver_stats:conv_rate",
                    "driver_stats:avg_daily_trips",
                    "customer_profile:current_balance",
                    "customer_profile:avg_passenger_count",
                    "customer_profile:lifetime_trip_count",
                ],
                full_feature_names=full_feature_names,
            )

            # Rename the join key; this should now raise an error.
            orders_df_with_invalid_join_key = orders_df.rename(
                {"customer_id": "customer"}, axis="columns")
            assertpy.assert_that(
                store.get_historical_features(
                    entity_df=orders_df_with_invalid_join_key,
                    features=[
                        "driver_stats:conv_rate",
                        "driver_stats:avg_daily_trips",
                        "customer_profile:current_balance",
                        "customer_profile:avg_passenger_count",
                        "customer_profile:lifetime_trip_count",
                    ],
                ).to_df).raises(errors.FeastEntityDFMissingColumnsError
                                ).when_called_with()

            start_time = datetime.utcnow()
            actual_df_from_df_entities = job_from_df.to_df()
            end_time = datetime.utcnow()
            with capsys.disabled():
                print(
                    str(f"Time to execute job_from_df.to_df() = '{(end_time - start_time)}'\n"
                        ))

            assert sorted(expected_df.columns) == sorted(
                actual_df_from_df_entities.columns)
            assert_frame_equal(
                expected_df.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                actual_df_from_df_entities[expected_df.columns].sort_values(
                    by=[
                        event_timestamp, "order_id", "driver_id", "customer_id"
                    ]).reset_index(drop=True),
                check_dtype=False,
            )

            table_from_df_entities = job_from_df.to_arrow()
            assert_frame_equal(
                actual_df_from_df_entities.sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
                table_from_df_entities.to_pandas().sort_values(by=[
                    event_timestamp, "order_id", "driver_id", "customer_id"
                ]).reset_index(drop=True),
            )
        finally:
            store.teardown()