Beispiel #1
0
def test_raises_error_when_transform_df_with_different_n_variables(
        df_datetime):
    transformer = DatetimeFeatures()
    transformer.fit(df_datetime)
    # different number of columns than the df used to fit
    with pytest.raises(ValueError):
        transformer.transform(df_datetime[vars_dt])
Beispiel #2
0
def test_raises_error_when_nan_in_transform_df(df_datetime):
    transformer = DatetimeFeatures()
    transformer.fit(df_datetime)
    # dataset containing nans
    with pytest.raises(ValueError):
        transformer.transform(dates_nan)
    transformer = DatetimeFeatures(variables="index")
    transformer.fit(dates_idx_dt)
    with pytest.raises(ValueError):
        transformer.transform(dates_idx_nan)
Beispiel #3
0
def test_extract_features_from_localized_tz_variables():
    tz_df = pd.DataFrame({
        "date_var": [
            "2018-10-28 01:30:00",
            "2018-10-28 02:00:00",
            "2018-10-28 02:30:00",
            "2018-10-28 02:00:00",
            "2018-10-28 02:30:00",
            "2018-10-28 03:00:00",
            "2018-10-28 03:30:00",
        ]
    })

    tz_df["date_var"] = pd.to_datetime(
        tz_df["date_var"]).dt.tz_localize(tz="US/Eastern")

    # when utc is None
    transformer = DatetimeFeatures(features_to_extract=["hour"]).fit(tz_df)

    # init params
    assert transformer.variables is None
    assert transformer.utc is None
    assert transformer.features_to_extract == ["hour"]
    # fit attr
    assert transformer.variables_ == ["date_var"]
    assert transformer.features_to_extract_ == ["hour"]
    assert transformer.n_features_in_ == 1
    # transform
    X = transformer.transform(tz_df)
    df_expected = pd.DataFrame({"date_var_hour": [1, 2, 2, 2, 2, 3, 3]})
    pd.testing.assert_frame_equal(X, df_expected)

    # when utc is True
    transformer = DatetimeFeatures(features_to_extract=["hour"],
                                   utc=True).fit(tz_df)

    # init params
    assert transformer.variables is None
    assert transformer.utc is True
    assert transformer.features_to_extract == ["hour"]
    # fit attr
    assert transformer.variables_ == ["date_var"]
    assert transformer.features_to_extract_ == ["hour"]
    assert transformer.n_features_in_ == 1
    # transform
    X = transformer.transform(tz_df)
    df_expected = pd.DataFrame({"date_var_hour": [5, 6, 6, 6, 6, 7, 7]})
    pd.testing.assert_frame_equal(X, df_expected)
Beispiel #4
0
def test_raises_error_when_transforming_not_a_df(_not_a_df, df_datetime):
    transformer = DatetimeFeatures()
    transformer.fit(df_datetime)
    # trying to transform not a df
    with pytest.raises(TypeError):
        transformer.transform(_not_a_df)