Beispiel #1
0
from sklearn import svm
from sklearn.externals import joblib
import pickle

warnings.filterwarnings("ignore")
"""clf = joblib.load('input/detection_iris_new.pkl')## this is the vnear robust one"""
clf = joblib.load(
    'input/detection_new18july.pkl')  ## this is taken at the beach
#clm = joblib.load('input/detection_new18july.pkl')
#clf1 = joblib.load('input/dronedetectionfinal_new.pkl')
#discard this part----------------------------------------------------------
rows = 10
cols = 60
winlist = []
"""set this part to the number of logs you want to save before computing confidence level"""
log = logdata(
    3)  ##check getconfi.py for more details(in feature_extraction folder)

######################################################################################################
global itervalue  #I used this when I needed to get only a certain number o iterations
itervalue = 0
"""this is the script which would record data"""


def record(time=1, fs=44100):
    file = 'temp_out'
    duration = time
    recording = sd.rec(int(duration * fs),
                       samplerate=fs,
                       channels=1,
                       blocking=False)
    for i in range(time):
Beispiel #2
0
warnings.filterwarnings("ignore")
"""set this true not to send any data to server"""
test = True
"""clf = joblib.load('input/detection_iris_new.pkl')## this is the vnear robust one"""
clf = joblib.load(
    'input/detection_backyaardwithnoise.pkl')  ## this is taken at the beach
#clm = joblib.load('input/detection_new18july.pkl')
#clf1 = joblib.load('input/dronedetectionfinal_new.pkl')

rows = 10
cols = 60
winlist = []
datacount = 4
"""set this part to the number of logs you want to save before computing confidence level"""
log = logdata(datacount)

######################################################################################################
global itervalue
itervalue = 0
"""this is the script which would record data"""


def record(time=1, fs=44100):
    file = 'temp_out'
    duration = time
    recording = sd.rec(int(duration * fs),
                       samplerate=fs,
                       channels=1,
                       blocking=False)
Beispiel #3
0
from sklearn import svm
from sklearn.externals import joblib
import pickle

warnings.filterwarnings("ignore")
"""clf = joblib.load('input/detection_iris_new.pkl')## this is the vnear robust one"""
clf = joblib.load(
    'input/detection_iris_new.pkl')  ## this is taken at the beach
#clm = joblib.load('input/detection_new18july.pkl')
#clf1 = joblib.load('input/dronedetectionfinal_new.pkl')

rows = 10
cols = 60
winlist = []
log = logdata(3)

######################################################################################################
global itervalue
itervalue = 0


def record(time=1, fs=44100):
    file = 'temp_out'
    duration = time
    recording = sd.rec(int(duration * fs),
                       samplerate=fs,
                       channels=1,
                       blocking=False)
    for i in range(time):
        i += 1
Beispiel #4
0
from sklearn import svm
from sklearn.externals import joblib
import pickle

warnings.filterwarnings("ignore")
"""clf = joblib.load('input/detection_iris_new.pkl')## this is the vnear robust one"""
clf = joblib.load(
    'input/detection_backyaard.pkl')  ## this is taken at the beach
#clm = joblib.load('input/detection_new18july.pkl')
#clf1 = joblib.load('input/dronedetectionfinal_new.pkl')

rows = 10
cols = 60
winlist = []
log = logdata(4)

######################################################################################################
global itervalue
itervalue = 0


def record(time=1, fs=44100):
    file = 'temp_out'
    duration = time
    recording = sd.rec(int(duration * fs),
                       samplerate=fs,
                       channels=1,
                       blocking=False)
    for i in range(time):
        i += 1
Beispiel #5
0
    elif value == 3:
        label = "vfar"
    elif value == 4:
        label = "vnear"
    return label


def drone_prediction_label(value):
    if value == 1:
        label = "drone"
    elif value == 0:
        label = "no drone"
    return label


log = logdata(10)
log.insertdf(3, str(datetime.datetime.now())[:-7])  #dummy value
i = 0
bandpass = [600, 10000]
for root, dirs, files in os.walk(sys.argv[1]):
    for file in files:
        path = os.path.join(root, file)
        try:
            data, fs = rdt.readaudio(path)
            ns = fil.bandpass_filter(data, bandpass)
            try:
                p, freq, b = hmn.psddetectionresults(data)
            except IndexError:
                pass
                b = False
            b = True