def __init__(self, answer, i): Feature.set_type(self, clas) Feature.set_name(self, 'Sentence sentiment') sentence = answer.sources[i].sentence s = sum(map(lambda word: afinn.get(word, 0), [word.lower() for word in tokenize(sentence)])) s = float(s) / len(sentence.split()) Feature.set_value(self, s)
def __init__(self, answer, i): Feature.set_type(self, clas) Feature.set_name(self, 'Question sentiment') q = sum( map(lambda word: afinn.get(word, 0), [word.lower() for word in tokenize(answer.q.text)])) q = float(q) / len(answer.q.text.split()) Feature.set_value(self, q)
def __init__(self, answer, i): Feature.set_type(self, clas) Feature.set_name(self, 'Sentence sentiment') sentence = answer.sources[i].sentence s = sum( map(lambda word: afinn.get(word, 0), [word.lower() for word in tokenize(sentence)])) s = float(s) / len(sentence.split()) Feature.set_value(self, s)
def predict(self, answer): s0 = ' '.join(tokenize(answer.q.text)) s1 = [' '.join(tokenize(source.sentence)) for source in answer.sources] f = [source.features for source in answer.sources] r = { 's0': s0, 's1': [dict([('text', s1_)] + [ (feat.get_type() + feat.get_name(), feat.get_value()) for feat in f_ ]) for s1_, f_ in zip(s1, f)] } print(r) req = urllib2.Request(self.url + 'score') req.add_header('Content-Type', 'application/json') resp = urllib2.urlopen(req, json.dumps(r)) rr = json.loads(resp.read()) print(rr) return {'y': rr['score'], 'class': rr['class'], 'rel': rr['rel']}
def predict(self, answer): s0 = ' '.join(tokenize(answer.q.text)) s1 = [' '.join(tokenize(source.sentence)) for source in answer.sources] f = [source.features for source in answer.sources] r = { 's0': s0, 's1': [ dict([('text', s1_)] + [(feat.get_type() + feat.get_name(), feat.get_value()) for feat in f_]) for s1_, f_ in zip(s1, f) ] } print(r) req = urllib2.Request(self.url + 'score') req.add_header('Content-Type', 'application/json') resp = urllib2.urlopen(req, json.dumps(r)) rr = json.loads(resp.read()) print(rr) return {'y': rr['score'], 'class': rr['class'], 'rel': rr['rel']}
def __init__(self, answer, i): Feature.set_type(self, clas) Feature.set_name(self, 'Question sentiment') q = sum(map(lambda word: afinn.get(word, 0), [word.lower() for word in tokenize(answer.q.text)])) q = float(q) / len(answer.q.text.split()) Feature.set_value(self, q)