def test_as_dict(foo_extractor): rs = FeatureSet( features_names=["foo"], values={"foo": 1}, timeserie=TIME_SERIE, extractors={"foo": foo_extractor}, ) assert rs.as_dict() == {"foo": 1}
def test_plot(foo_extractor): rs = FeatureSet( features_names=["foo"], values={"foo": 1}, timeserie=TIME_SERIE, extractors={"foo": foo_extractor}, ) assert isinstance(rs.plot("foo"), axes.Axes)
def test_as_dataframe(foo_extractor): rs = FeatureSet( features_names=["foo"], values={"foo": 1}, timeserie=TIME_SERIE, extractors={"foo": foo_extractor}, ) expected = pd.DataFrame([{"foo": 1.0}]) assert rs.as_dataframe().equals(expected)
def test_as_array(foo_extractor): rs = FeatureSet( features_names=["foo"], values={"foo": 1}, timeserie=TIME_SERIE, extractors={"foo": foo_extractor}, ) feats, values = rs.as_arrays() assert list(feats) == unordered(["foo"]) assert list(values) == unordered([1])
def test_invalid_feature(): with pytest.raises(FeatureNotFound): FeatureSet( features_names=["Fail"], values={"fail": 1}, timeserie=TIME_SERIE, extractors={}, )
def test_getitem(foo_extractor): rs = FeatureSet( features_names=["foo"], values={"foo": 1}, timeserie=TIME_SERIE, extractors={"foo": foo_extractor}, ) assert rs["foo"] == 1 with pytest.raises(KeyError): rs["faaa"]
def test_repr(foo_extractor): timeserie = TIME_SERIE.copy() timeserie.update(time=1, error=2) rs = FeatureSet( features_names=["foo"], values={"foo": 1}, timeserie=timeserie, extractors={"foo": foo_extractor}, ) expected = "FeatureSet(features=<foo>, timeserie=<time, error>)" assert repr(rs) == str(rs) == expected