q = 2
if myrank == 0: print '\npolynomial order = {}'.format(q)
alpha = 3.

for Nxy in NN:
    h = 1./Nxy
    mesh = UnitSquareMesh(Nxy, Nxy)
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h/(q*alpha*c)
    if myrank == 0: print '\n\th = {} - Dt = {}'.format(h, Dt)

    Wave = AcousticWave({'V':V, 'Vl':Vl, 'Vr':Vl})
    Wave.timestepper = 'backward'
    Wave.lump = True
    Wave.exact = interpolate(uex_expr, V)
    Wave.bc = DirichletBC(V, ubc, u0_boundary)
    Wave.update({'lambda':lam, 'rho':rho, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None:  MPI.barrier(mycomm)

if myrank == 0:
    # Order of convergence:
    CONVORDER = []
    for ii in range(len(ERROR)-1):
        CONVORDER.append(np.log(ERROR[ii+1]/ERROR[ii])/np.log((1./NN[ii+1])/(1./NN[ii])))
    print '\n\norder of convergence:', CONVORDER
def source(tt):
    return Expression('6*(sqrt(pow(x[0]-0.5,2)+pow(x[1]-0.5,2))<=t)', t=tt)

for Nxy in NN:
    h = 1./Nxy
    print '\n\th = {}'.format(h)
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    q = 1   # Polynomial order
    V = FunctionSpace(mesh, 'Lagrange', q)
    Dt = h/(q*5.*c)

    Wave = AcousticWave({'V':V, 'Vl':V, 'Vr':V})
    Wave.timestepper = 'backward'
    Wave.lump = True
    #Wave.verbose = True
    Wave.exact = interpolate(exact_expr, V)
    Wave.update({'lambda':lam, 'rho':rho, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':Function(V)})
    test = TestFunction(V)
    def srcterm(tt):
        src_expr = source(tt)
        src_vect = assemble(src_expr*test*dx)
        return src_vect.array()
    Wave.ftime = srcterm
    sol, error = Wave.solve()
    ERROR.append(error)
    print 'relative error = {:.5e}'.format(error)

# Convergence order:
CONVORDER = []
for ii in range(len(ERROR)-1):
        return on_boundary

for r in RR:
    V = FunctionSpace(mesh, 'Lagrange', r)
    Pt = PointSources(V, [[.5,.5]])
    mydelta = Pt[0].array()
    def mysrc(tt):
        return Ricker(tt)*mydelta
    # Computation:
    if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
    Wave = AcousticWave({'V':V, 'Vl':Vl, 'Vr':Vl})
    #Wave.verbose = True
    Wave.timestepper = 'centered'
    Wave.lump = True
    Wave.set_abc(mesh, AllFour(), True)
    Wave.exact = Function(V)
    Wave.update({'lambda':1.0, 'rho':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':Function(V)})
    Wave.ftime = mysrc
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None:  MPI.barrier(mycomm)

# Plots:
try:
    boolplot = int(sys.argv[1])
except:
    boolplot = 0
if boolplot > 0:
    filename, ext = splitext(sys.argv[0])
Pt = PointSources(Vex, [[.5, .5]])
mydelta = Pt[0].array()


def mysrc(tt):
    return Ricker(tt) * mydelta


Waveex = AcousticWave({'V': Vex, 'Vm': Vl})
Waveex.timestepper = 'backward'
Waveex.lump = True
Waveex.update({'a':1.0, 'b':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
'u0init':dl.Function(Vex), 'utinit':dl.Function(Vex)})
Waveex.ftime = mysrc
sol, _ = Waveex.solve()
Waveex.exact = dl.Function(Vex)
normex = Waveex.computeabserror()
# plot
myplot.set_varname('u-q' + str(qq))
plotu = dl.Function(Vex)
for index, uu in enumerate(sol):
    if index % boolplot == 0:
        setfct(plotu, uu[0])
        myplot.plot_vtk(plotu, index)
myplot.gather_vtkplots()

print 'Check different spatial sampling'
QQ = [4, 5, 6, 10]
for qq in QQ:
    N = int(qq / cmin)
    h = 1. / N
for r in RR:
    V = FunctionSpace(mesh, 'Lagrange', r)
    Pt = PointSources(V, [[.5, .5]])
    mydelta = Pt[0].array()

    def mysrc(tt):
        return Ricker(tt) * mydelta

    # Computation:
    if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
    Wave = AcousticWave({'V': V, 'Vm': Vl})
    #Wave.verbose = True
    Wave.timestepper = 'centered'
    Wave.lump = True
    Wave.set_abc(mesh, AllFour(), True)
    Wave.exact = Function(V)
    Wave.update({'b':1.0, 'a':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':Function(V)})
    Wave.ftime = mysrc
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None: MPI.barrier(mycomm)

# Plots:
try:
    boolplot = int(sys.argv[1])
except:
    boolplot = 0
if boolplot > 0:
    filename, ext = splitext(sys.argv[0])
Beispiel #6
0
alpha = 5.

for Nxy in NN:
    h = 1. / Nxy
    mesh = UnitSquareMesh(Nxy, Nxy)
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h / (q * alpha * c)
    if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)

    Wave = AcousticWave({'V': V, 'Vm': Vl})
    #Wave.verbose = True
    Wave.timestepper = 'centered'
    Wave.lump = True
    Wave.set_abc(mesh, LeftRight(), True)
    Wave.exact = interpolate(exact_expr, V)
    Wave.update({'b':b, 'a':a, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    Wave.ftime = lambda t: 0.0
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None: MPI.barrier(mycomm)

if myrank == 0:
    # Order of convergence:
    CONVORDER = []
    for ii in range(len(ERROR) - 1):
        CONVORDER.append(
            np.log(ERROR[ii + 1] / ERROR[ii]) / np.log(
                (1. / NN[ii + 1]) / (1. / NN[ii])))
h = 1./N
mesh = dl.UnitSquareMesh(N,N)
Vl = dl.FunctionSpace(mesh, 'Lagrange', 1)
Vex = dl.FunctionSpace(mesh, 'Lagrange', r)
Pt = PointSources(Vex, [[.5,.5]])
mydelta = Pt[0].array()
def mysrc(tt):
    return Ricker(tt)*mydelta
Waveex = AcousticWave({'V':Vex, 'Vl':Vl, 'Vr':Vl})
Waveex.timestepper = 'backward'
Waveex.lump = True
Waveex.update({'lambda':1.0, 'rho':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
'u0init':dl.Function(Vex), 'utinit':dl.Function(Vex)})
Waveex.ftime = mysrc
sol,_ = Waveex.solve()
Waveex.exact = dl.Function(Vex)
normex = Waveex.computeabserror()
# plot
myplot.set_varname('u-q'+str(qq))
plotu = dl.Function(Vex)
for index, uu in enumerate(sol):
    if index%boolplot == 0:
        setfct(plotu, uu[0])
        myplot.plot_vtk(plotu, index)
myplot.gather_vtkplots()

print 'Check different spatial sampling'
QQ = [4, 5, 6, 10]
for qq in QQ:
    N = int(qq/cmin)
    h = 1./N