Beispiel #1
0
 def __init__(self, **kwargs):
     """
     Keyword arguments
     -------------------
     basedir : str
         Top level directory for finding files
     """
     self._name_factory = NameFactory(**kwargs)
     self._dmm = kwargs.get('DiffuseModelManager',
                            DiffuseModelManager(**kwargs))
     self._gmm = kwargs.get('GalpropMapManager',
                            GalpropMapManager(**kwargs))
     self._csm = kwargs.get('CatalogSourceManager',
                            CatalogSourceManager(**kwargs))
     self._library = {}
     self._models = {}
     self._spec_lib = SpectralLibrary({})
Beispiel #2
0
 def __init__(self, **kwargs):
     """
     Keyword arguments
     -------------------
     basedir : str
         Top level directory for finding files
     """
     self._name_factory = NameFactory(**kwargs)
     self._dmm = kwargs.get('DiffuseModelManager',
                            DiffuseModelManager(**kwargs))
     self._gmm = kwargs.get('GalpropMapManager',
                            GalpropMapManager(**kwargs))
     self._csm = kwargs.get('CatalogSourceManager',
                            CatalogSourceManager(**kwargs))
     self._library = {}
     self._models = {}
     self._spec_lib = SpectralLibrary({})
Beispiel #3
0
class ModelManager(object):
    """ Small helper class to create fitting models and manager XML files for fermipy

    This class contains a 'library', which is a dictionary of all the source components:

    specifically it maps:

    sourcekey : `model_component.ModelComponentInfo`

    """
    def __init__(self, **kwargs):
        """
        Keyword arguments
        -------------------
        basedir : str
            Top level directory for finding files
        """
        self._name_factory = NameFactory(**kwargs)
        self._dmm = kwargs.get('DiffuseModelManager',
                               DiffuseModelManager(**kwargs))
        self._gmm = kwargs.get('GalpropMapManager',
                               GalpropMapManager(**kwargs))
        self._csm = kwargs.get('CatalogSourceManager',
                               CatalogSourceManager(**kwargs))
        self._library = {}
        self._models = {}
        self._spec_lib = SpectralLibrary({})

    def read_model_yaml(self, modelkey):
        """ Read the yaml file for the diffuse components
        """
        model_yaml = self._name_factory.model_yaml(modelkey=modelkey,
                                                   fullpath=True)
        model = yaml.safe_load(open(model_yaml))
        return model

    @property
    def dmm(self):
        """ Return the DiffuseModelManager """
        return self._dmm

    @property
    def gmm(self):
        """ Return the GalpropMapManager """
        return self._gmm

    @property
    def csm(self):
        """ Return the CatalogSourceManager """
        return self._csm

    def make_library(self, diffuse_yaml, catalog_yaml, binning_yaml):
        """ Build up the library of all the components

        Parameters
        ----------

        diffuse_yaml : str
            Name of the yaml file with the library of diffuse component definitions
        catalog_yaml : str
            Name of the yaml file width the library of catalog split definitions
        binning_yaml : str
            Name of the yaml file with the binning definitions
        """
        ret_dict = {}
        #catalog_dict = yaml.safe_load(open(catalog_yaml))
        components_dict = Component.build_from_yamlfile(binning_yaml)
        diffuse_ret_dict = make_diffuse_comp_info_dict(
            GalpropMapManager=self._gmm,
            DiffuseModelManager=self._dmm,
            library=diffuse_yaml,
            components=components_dict)
        catalog_ret_dict = make_catalog_comp_dict(
            library=catalog_yaml, CatalogSourceManager=self._csm)
        ret_dict.update(diffuse_ret_dict['comp_info_dict'])
        ret_dict.update(catalog_ret_dict['comp_info_dict'])
        self._library.update(ret_dict)
        return ret_dict

    def make_model_info(self, modelkey):
        """ Build a dictionary with the information for a particular model.

        Parameters
        ----------

        modelkey : str
            Key used to identify this particular model

        Return `ModelInfo`
        """
        model = self.read_model_yaml(modelkey)
        sources = model['sources']
        components = OrderedDict()
        spec_model_yaml = self._name_factory.fullpath(
            localpath=model['spectral_models'])
        self._spec_lib.update(yaml.safe_load(open(spec_model_yaml)))
        for source, source_info in sources.items():
            model_type = source_info.get('model_type', None)
            par_overrides = source_info.get('par_overides', None)
            version = source_info['version']
            spec_type = source_info['SpectrumType']
            edisp_disable = source_info.get('edisp_disable', False)
            sourcekey = "%s_%s" % (source, version)
            if model_type == 'galprop_rings':
                comp_info_dict = self.gmm.diffuse_comp_info_dicts(version)
                def_spec_type = spec_type['default']
                for comp_key, comp_info in comp_info_dict.items():
                    model_comp = ModelComponent(info=comp_info,
                                                spectrum=\
                                                    self._spec_lib[spec_type.get(comp_key,
                                                                                 def_spec_type)],
                                                par_overrides=par_overrides,
                                                edisp_disable=edisp_disable)
                    components[comp_key] = model_comp
            elif model_type == 'Catalog':
                comp_info_dict = self.csm.split_comp_info_dict(source, version)
                def_spec_type = spec_type['default']
                for comp_key, comp_info in comp_info_dict.items():
                    model_comp = ModelComponent(info=comp_info,
                                                spectrum=\
                                                    self._spec_lib[spec_type.get(comp_key,
                                                                                 def_spec_type)],
                                                par_overrides=par_overrides,
                                                edisp_disable=edisp_disable)
                    components[comp_key] = model_comp
            else:
                comp_info = self.dmm.diffuse_comp_info(sourcekey)
                model_comp = ModelComponent(info=comp_info,
                                            spectrum=self._spec_lib[spec_type],
                                            par_overrides=par_overrides,
                                            edisp_disable=edisp_disable)
                components[sourcekey] = model_comp
        ret_val = ModelInfo(model_name=modelkey, model_components=components)
        self._models[modelkey] = ret_val
        return ret_val

    def make_srcmap_manifest(self, modelkey, components, data):
        """Build a yaml file that specfies how to make the srcmap files for a particular model

        Parameters
        ----------

        modelkey : str
            Key used to identify this particular model
        components : list
            The binning components used in this analysis
        data : str
            Path to file containing dataset definition
        """
        try:
            model_info = self._models[modelkey]
        except KeyError:
            model_info = self.make_model_info(modelkey)
        self._name_factory.update_base_dict(data)
        outfile = os.path.join('analysis', 'model_%s' % modelkey,
                               'srcmap_manifest_%s.yaml' % modelkey)
        manifest = model_info.make_srcmap_manifest(components,
                                                   self._name_factory)

        outdir = os.path.dirname(outfile)
        try:
            os.makedirs(outdir)
        except OSError:
            pass
        utils.write_yaml(manifest, outfile)

    def make_fermipy_config_yaml(self, modelkey, components, data, **kwargs):
        """Build a fermipy top-level yaml configuration file

        Parameters
        ----------

        modelkey : str
            Key used to identify this particular model
        components : list
            The binning components used in this analysis
        data : str
            Path to file containing dataset definition
        """
        model_dir = os.path.join('analysis', 'model_%s' % modelkey)
        hpx_order = kwargs.get('hpx_order', 9)
        self._name_factory.update_base_dict(data)
        try:
            model_info = self._models[modelkey]
        except KeyError:
            model_info = self.make_model_info(modelkey)

        model_rois = model_info.make_model_rois(components, self._name_factory)

        #source_names = model_info.component_names

        master_xml_mdl = os.path.basename(
            self._name_factory.master_srcmdl_xml(modelkey=modelkey))

        master_data = dict(scfile=self._name_factory.ft2file(fullpath=True),
                           cacheft1=False)
        master_binning = dict(projtype='HPX',
                              roiwidth=360.,
                              binsperdec=4,
                              hpx_ordering_scheme="RING",
                              hpx_order=hpx_order,
                              hpx_ebin=True)
        # master_fileio = dict(outdir=model_dir,
        #                     logfile=os.path.join(model_dir, 'fermipy.log'))
        master_fileio = dict(logfile='fermipy.log')
        master_gtlike = dict(irfs=self._name_factory.irfs(**kwargs),
                             edisp_disable=model_info.edisp_disable_list(),
                             use_external_srcmap=True)
        master_selection = dict(glat=0., glon=0., radius=180.)
        master_model = dict(catalogs=[master_xml_mdl])
        master_plotting = dict(label_ts_threshold=1e9)

        master = dict(data=master_data,
                      binning=master_binning,
                      fileio=master_fileio,
                      selection=master_selection,
                      gtlike=master_gtlike,
                      model=master_model,
                      plotting=master_plotting,
                      components=[])

        fermipy_dict = master

        #comp_rois = {}

        for comp in components:
            zcut = "zmax%i" % comp.zmax
            compkey = "%s_%s" % (zcut,
                                 comp.make_key('{ebin_name}_{evtype_name}'))
            comp_roi = model_rois[compkey]
            name_keys = dict(zcut=zcut,
                             modelkey=modelkey,
                             component=compkey,
                             mktime='none',
                             coordsys=comp.coordsys,
                             fullpath=True)
            comp_data = dict(ltcube=self._name_factory.ltcube(**name_keys))
            comp_selection = dict(logemin=comp.log_emin,
                                  logemax=comp.log_emax,
                                  zmax=comp.zmax,
                                  evtype=comp.evtype)
            comp_binning = dict(enumbins=comp.enumbins,
                                hpx_order=min(comp.hpx_order, hpx_order),
                                coordsys=comp.coordsys)
            comp_gtlike = dict(
                srcmap=self._name_factory.merged_srcmaps(**name_keys),
                bexpmap=self._name_factory.bexpcube(**name_keys),
                use_external_srcmap=True)
            #comp_roi_source_info = {}
            diffuse_srcs = []
            for src in comp_roi.diffuse_sources:
                if isinstance(src, MapCubeSource):
                    diffuse_srcs.append(dict(name=src.name, file=src.mapcube))
                elif isinstance(src, IsoSource):
                    diffuse_srcs.append(
                        dict(name=src.name, file=src.fileFunction))
                else:
                    pass

            comp_model = dict(diffuse=diffuse_srcs)
            sub_dict = dict(data=comp_data,
                            binning=comp_binning,
                            selection=comp_selection,
                            gtlike=comp_gtlike,
                            model=comp_model)
            fermipy_dict['components'].append(sub_dict)

        # Add placeholder diffuse sources
        fermipy_dict['model']['diffuse'] = diffuse_srcs

        outfile = os.path.join(model_dir, 'config.yaml')
        print("Writing fermipy config file %s" % outfile)
        utils.write_yaml(fermipy_dict, outfile)
        return fermipy_dict

    @staticmethod
    def get_sub_comp_info(source_info, comp):
        """Build and return information about a sub-component for a particular selection
        """
        sub_comps = source_info.get('components', None)
        if sub_comps is None:
            return source_info.copy()
        moving = source_info.get('moving', False)
        selection_dependent = source_info.get('selection_dependent', False)
        if selection_dependent:
            key = comp.make_key('{ebin_name}_{evtype_name}')
        elif moving:
            key = "zmax%i" % comp.zmax
        ret_dict = source_info.copy()
        ret_dict.update(sub_comps[key])
        return ret_dict
Beispiel #4
0
def test_spectral():
    the_yaml = """
Constant_Correction :
  SpectrumType : ConstantValue
  spectral_pars : 
    Value :
      name : Value
      scale : 1.0
      value : 1.0 
      min : 1e-4
      max: 1e4
      free : False       
Powerlaw_Correction :
  SpectrumType : PowerLaw
  spectral_pars : 
    Prefactor : 
      name : Prefactor
      scale : 1.0
      value : 1.0 
      min : 0.1
      max: 10.0
      free : False
    Index : 
      name:  Index
      scale : -1.0
      value : 0.0
      min : -1.0
      max : 1.0
      free : False
    Scale : 
      name: Scale
      scale : 1.0
      value : 1000.0
      min : 1000.0
      max : 1000.0
      free : False
LogParabola_Correction :
  SpectrumType : LogParabola
  spectral_pars : 
    norm : 
      name : norm
      scale : 1.0
      value : 1.0 
      min : 0.1
      max: 10.0
      free : False
    alpha : 
      name:  alpha
      scale : 1.0
      value : 0.0
      min : -2.0
      max : 2.0
      free : False
    beta : 
      name:  beta
      scale : 1.0
      value : 0.0
      min : -10.0
      max : 10.0
      free : False
    Eb : 
      name: Eb
      scale : 1.0
      value : 1000.0
      min : 10.0
      max : 100000.0
      free : False
"""
    spectra = SpectralLibrary.create_from_yamlstr(the_yaml)

    # spot check some values
    assert(spectra['Constant_Correction']['SpectrumType'] == 'ConstantValue')
    assert(len(spectra['Constant_Correction']['spectral_pars']) == 1)
    assert(spectra['Constant_Correction'][
           'spectral_pars']['Value']['value'] == 1.0)
    assert(spectra['Constant_Correction'][
           'spectral_pars']['Value']['scale'] == 1.0)
    #assert(spectra['Constant_Correction']['spectral_pars']['Value']['min'] == 1e-4)
    #assert(spectra['Constant_Correction']['spectral_pars']['Value']['max'] == 1e4)
    assert(spectra['Constant_Correction'][
           'spectral_pars']['Value']['free'] is False)

    assert(spectra['LogParabola_Correction']['SpectrumType'] == 'LogParabola')
    assert(len(spectra['LogParabola_Correction']['spectral_pars']) == 4)
    assert(spectra['LogParabola_Correction'][
           'spectral_pars']['norm']['value'] == 1.0)
    assert(spectra['LogParabola_Correction'][
           'spectral_pars']['norm']['scale'] == 1.0)
    assert(spectra['LogParabola_Correction'][
           'spectral_pars']['norm']['min'] == 0.1)
    assert(spectra['LogParabola_Correction'][
           'spectral_pars']['norm']['max'] == 10.0)
    assert(spectra['LogParabola_Correction'][
           'spectral_pars']['norm']['free'] is False)
Beispiel #5
0
class ModelManager(object):
    """ Small helper class to create fitting models and manager XML files for fermipy

    This class contains a 'library', which is a dictionary of all the source components:

    specifically it maps:

    sourcekey : `model_component.ModelComponentInfo`

    """

    def __init__(self, **kwargs):
        """
        Keyword arguments
        -------------------
        basedir : str
            Top level directory for finding files
        """
        self._name_factory = NameFactory(**kwargs)
        self._dmm = kwargs.get('DiffuseModelManager',
                               DiffuseModelManager(**kwargs))
        self._gmm = kwargs.get('GalpropMapManager',
                               GalpropMapManager(**kwargs))
        self._csm = kwargs.get('CatalogSourceManager',
                               CatalogSourceManager(**kwargs))
        self._library = {}
        self._models = {}
        self._spec_lib = SpectralLibrary({})

    def read_model_yaml(self, modelkey):
        """ Read the yaml file for the diffuse components
        """
        model_yaml = self._name_factory.model_yaml(modelkey=modelkey,
                                                   fullpath=True)
        model = yaml.safe_load(open(model_yaml))
        return model

    @property
    def dmm(self):
        """ Return the DiffuseModelManager """
        return self._dmm

    @property
    def gmm(self):
        """ Return the GalpropMapManager """
        return self._gmm

    @property
    def csm(self):
        """ Return the CatalogSourceManager """
        return self._csm

    def make_library(self, diffuse_yaml, catalog_yaml, binning_yaml):
        """ Build up the library of all the components

        Parameters
        ----------

        diffuse_yaml : str
            Name of the yaml file with the library of diffuse component definitions
        catalog_yaml : str
            Name of the yaml file with the library of catalog split definitions
        binning_yaml : str
            Name of the yaml file with the binning definitions
        """
        ret_dict = {}
        #catalog_dict = yaml.safe_load(open(catalog_yaml))
        components_dict = Component.build_from_yamlfile(binning_yaml)
        diffuse_ret_dict = make_diffuse_comp_info_dict(GalpropMapManager=self._gmm,
                                                       DiffuseModelManager=self._dmm,
                                                       diffuse=diffuse_yaml,
                                                       components=components_dict)
        catalog_ret_dict = make_catalog_comp_dict(sources=catalog_yaml,
                                                  CatalogSourceManager=self._csm)
        ret_dict.update(diffuse_ret_dict['comp_info_dict'])
        ret_dict.update(catalog_ret_dict['comp_info_dict'])
        self._library.update(ret_dict)
        return ret_dict

    def make_model_info(self, modelkey):
        """ Build a dictionary with the information for a particular model.

        Parameters
        ----------

        modelkey : str
            Key used to identify this particular model

        Return `ModelInfo`
        """
        model = self.read_model_yaml(modelkey)
        sources = model['sources']
        components = OrderedDict()
        spec_model_yaml = self._name_factory.fullpath(localpath=model['spectral_models'])
        self._spec_lib.update(yaml.safe_load(open(spec_model_yaml)))
        for source, source_info in sources.items():
            model_type = source_info.get('model_type', None)
            version = source_info['version']
            spec_type = source_info['SpectrumType']
            sourcekey = "%s_%s" % (source, version)
            if model_type == 'galprop_rings':
                comp_info_dict = self.gmm.diffuse_comp_info_dicts(version)
                def_spec_type = spec_type['default']
                for comp_key, comp_info in comp_info_dict.items():
                    model_comp = ModelComponent(info=comp_info,
                                                spectrum=\
                                                    self._spec_lib[spec_type.get(comp_key,
                                                                                 def_spec_type)])
                    components[comp_key] = model_comp
            elif model_type == 'Catalog':
                comp_info_dict = self.csm.split_comp_info_dict(source, version)
                def_spec_type = spec_type['default']
                for comp_key, comp_info in comp_info_dict.items():
                    model_comp = ModelComponent(info=comp_info,
                                                spectrum=\
                                                    self._spec_lib[spec_type.get(comp_key,
                                                                                 def_spec_type)])
                    components[comp_key] = model_comp
            else:
                comp_info = self.dmm.diffuse_comp_info(sourcekey)
                model_comp = ModelComponent(info=comp_info,
                                            spectrum=self._spec_lib[spec_type])
                components[sourcekey] = model_comp
        ret_val = ModelInfo(model_name=modelkey,
                            model_components=components)
        self._models[modelkey] = ret_val
        return ret_val

    def make_srcmap_manifest(self, modelkey, components, data):
        """Build a yaml file that specfies how to make the srcmap files for a particular model

        Parameters
        ----------

        modelkey : str
            Key used to identify this particular model
        components : list
            The binning components used in this analysis
        data : str
            Path to file containing dataset definition
        """
        try:
            model_info = self._models[modelkey]
        except KeyError:
            model_info = self.make_model_info(modelkey)
        self._name_factory.update_base_dict(data)
        outfile = os.path.join('analysis', 'model_%s' %
                               modelkey, 'srcmap_manifest_%s.yaml' % modelkey)
        manifest = model_info.make_srcmap_manifest(
            components, self._name_factory)

        outdir = os.path.dirname(outfile)
        try:
            os.makedirs(outdir)
        except OSError:
            pass
        utils.write_yaml(manifest, outfile)

    def make_fermipy_config_yaml(self, modelkey, components, data, **kwargs):
        """Build a fermipy top-level yaml configuration file

        Parameters
        ----------

        modelkey : str
            Key used to identify this particular model
        components : list
            The binning components used in this analysis
        data : str
            Path to file containing dataset definition
        """
        model_dir = os.path.join('analysis', 'model_%s' % modelkey)
        hpx_order = kwargs.get('hpx_order', 9)
        self._name_factory.update_base_dict(data)
        try:
            model_info = self._models[modelkey]
        except KeyError:
            model_info = self.make_model_info(modelkey)

        model_info.make_model_rois(components, self._name_factory)

        #source_names = model_info.component_names

        master_xml_mdl = os.path.basename(
            self._name_factory.master_srcmdl_xml(modelkey=modelkey))

        master_data = dict(scfile=self._name_factory.ft2file(fullpath=True),
                           cacheft1=False)
        master_binning = dict(projtype='HPX',
                              coordsys=kwargs.get('coordsys', 'GAL'),
                              roiwidth=180.,
                              binsperdec=8,
                              hpx_ordering_scheme="RING",
                              hpx_order=hpx_order,
                              hpx_ebin=True)
        master_fileio = dict(outdir=model_dir,
                             logfile=os.path.join(model_dir, 'fermipy.log'))
        master_gtlike = dict(irfs=self._name_factory.irfs(**kwargs),
                             edisp_disable=['isodiff', 'diffuse', 'limb'])
        master_selection = dict(glat=0., glon=0., radius=180.)
        master_model = dict(catalogs=[master_xml_mdl])

        master = dict(data=master_data,
                      binning=master_binning,
                      fileio=master_fileio,
                      selection=master_selection,
                      gtlike=master_gtlike,
                      model=master_model,
                      components=[])

        fermipy_dict = master

        #comp_rois = {}

        for comp in components:
            zcut = "zmax%i" % comp.zmax
            compkey = "%s_%s" % (zcut, comp.make_key(
                '{ebin_name}_{evtype_name}'))
            name_keys = dict(zcut=zcut,
                             modelkey=modelkey,
                             component=compkey,
                             fullpath=True)
            comp_data = dict(ltcube=self._name_factory.ltcube(**name_keys))
            comp_selection = dict(logemin=comp.log_emin,
                                  logemax=comp.log_emax,
                                  zmax=comp.zmax,
                                  evtype=comp.evtype)
            comp_binning = dict(enumbins=comp.enumbins,
                                hpx_order=min(comp.hpx_order, hpx_order))
            comp_gtlike = dict(srcmap=self._name_factory.merged_srcmaps(**name_keys),
                               bexpmap=self._name_factory.bexpcube(**name_keys))
            #comp_roi_source_info = {}

            comp_xml_mdl = os.path.basename(self._name_factory.comp_srcmdl_xml(modelkey=modelkey,
                                                                               component=compkey))
            comp_model = dict(catalogs=[master_xml_mdl, comp_xml_mdl])
            sub_dict = dict(data=comp_data,
                            binning=comp_binning,
                            selection=comp_selection,
                            gtlike=comp_gtlike,
                            model=comp_model)
            fermipy_dict['components'].append(sub_dict)

        outfile = os.path.join(model_dir, 'config.yaml')
        print ("Writing fermipy config file %s"%outfile)
        utils.write_yaml(fermipy_dict, outfile)
        return fermipy_dict

    @staticmethod
    def get_sub_comp_info(source_info, comp):
        """Build and return information about a sub-component for a particular selection
        """
        sub_comps = source_info.get('components', None)
        if sub_comps is None:
            return source_info.copy()
        moving = source_info.get('moving', False)
        selection_dependent = source_info.get('selection_dependent', False)
        if selection_dependent:
            key = comp.make_key('{ebin_name}_{evtype_name}')
        elif moving:
            key = "zmax%i" % comp.zmax
        ret_dict = source_info.copy()
        ret_dict.update(sub_comps[key])
        return ret_dict
Beispiel #6
0
def test_spectral():
    the_yaml = """
Constant_Correction :
  SpectrumType : ConstantValue
  spectral_pars : 
    Value :
      name : Value
      scale : 1.0
      value : 1.0 
      min : 1e-4
      max: 1e4
      free : False       
Powerlaw_Correction :
  SpectrumType : PowerLaw
  spectral_pars : 
    Prefactor : 
      name : Prefactor
      scale : 1.0
      value : 1.0 
      min : 0.1
      max: 10.0
      free : False
    Index : 
      name:  Index
      scale : -1.0
      value : 0.0
      min : -1.0
      max : 1.0
      free : False
    Scale : 
      name: Scale
      scale : 1.0
      value : 1000.0
      min : 1000.0
      max : 1000.0
      free : False
LogParabola_Correction :
  SpectrumType : LogParabola
  spectral_pars : 
    norm : 
      name : norm
      scale : 1.0
      value : 1.0 
      min : 0.1
      max: 10.0
      free : False
    alpha : 
      name:  alpha
      scale : 1.0
      value : 0.0
      min : -2.0
      max : 2.0
      free : False
    beta : 
      name:  beta
      scale : 1.0
      value : 0.0
      min : -10.0
      max : 10.0
      free : False
    Eb : 
      name: Eb
      scale : 1.0
      value : 1000.0
      min : 10.0
      max : 100000.0
      free : False
"""
    spectra = SpectralLibrary.create_from_yamlstr(the_yaml)

    # spot check some values
    assert (spectra['Constant_Correction']['SpectrumType'] == 'ConstantValue')
    assert (len(spectra['Constant_Correction']['spectral_pars']) == 1)
    assert (spectra['Constant_Correction']['spectral_pars']['Value']['value']
            == 1.0)
    assert (spectra['Constant_Correction']['spectral_pars']['Value']['scale']
            == 1.0)
    #assert(spectra['Constant_Correction']['spectral_pars']['Value']['min'] == 1e-4)
    #assert(spectra['Constant_Correction']['spectral_pars']['Value']['max'] == 1e4)
    assert (spectra['Constant_Correction']['spectral_pars']['Value']['free'] is
            False)

    assert (spectra['LogParabola_Correction']['SpectrumType'] == 'LogParabola')
    assert (len(spectra['LogParabola_Correction']['spectral_pars']) == 4)
    assert (spectra['LogParabola_Correction']['spectral_pars']['norm']['value']
            == 1.0)
    assert (spectra['LogParabola_Correction']['spectral_pars']['norm']['scale']
            == 1.0)
    assert (spectra['LogParabola_Correction']['spectral_pars']['norm']['min']
            == 0.1)
    assert (spectra['LogParabola_Correction']['spectral_pars']['norm']['max']
            == 10.0)
    assert (spectra['LogParabola_Correction']['spectral_pars']['norm']['free']
            is False)