Beispiel #1
0
def preproc_and_norm(data, preprocess_method, norm_params):
    if preprocess_method is not None:
        print('Applying preprocess by {}...'.format(preprocess_method))
        if preprocess_method == 'window_1_99':
            data = window_intensities_data(data)
        else:
            raise Exception('Unknown preprocess: {}'.format(preprocess_method))

    if norm_params is not None and any(norm_params.values()):
        data = normalize_data(data,
                              mean=norm_params['mean'],
                              std=norm_params['std'])
    return data
def preproc_and_norm(data, preprocess_method=None, norm_params=None, scale=None, preproc=None):
    if preprocess_method is not None:
        print('Applying preprocess by {}...'.format(preprocess_method))
        if preprocess_method == 'window_1_99':
            data = window_intensities_data(data)
        else:
            raise Exception('Unknown preprocess: {}'.format(preprocess_method))

    if scale is not None:
        data = ndimage.zoom(data, scale)
    if preproc is not None:
        preproc_func = getattr(fetal_net.preprocess, preproc)
        data = preproc_func(data)

    # data = normalize_data(data, mean=data.mean(), std=data.std())
    if norm_params is not None and any(norm_params.values()):
        data = normalize_data(data, mean=norm_params['mean'], std=norm_params['std'])
    return data
Beispiel #3
0
def main(input_mat_path, output_mat_path, config, overlap_factor, model_path, preprocess_method=None, norm_params=None):
    print(model_path)
    model = load_old_model(get_last_model_path(model_path))
    print('Loading mat from {}...'.format(input_mat_path))
    mat = loadmat(input_mat_path)
    print('Predicting mask...')
    data = mat['volume'].astype(np.float)

    if preprocess_method is not None:
        print('Applying preprocess by {}...'.format(preprocess_method))
        if preprocess_method == 'window_1_99':
            data = window_intensities_data(data)
        else:
            raise Exception('Unknown preprocess: {}'.format(preprocess_method))

    if norm_params is not None and any(norm_params.values()):
        data = normalize_data(data, mean=norm_params['mean'], std=norm_params['std'])

    prediction = \
        patch_wise_prediction(model=model,
                              data=np.expand_dims(data, 0),
                              overlap_factor=overlap_factor,
                              patch_shape=config["patch_shape"] + [config["patch_depth"]])

    print('Post-processing mask...')
    if prediction.shape[-1] > 1:
        prediction = prediction[..., 1]
    prediction = prediction.squeeze()
    mat['masks'][0, 9] = \
        process_pred(prediction, gaussian_std=0, threshold=0.2)  # .astype(np.uint8)
    mat['masks'][0, 8] = \
        process_pred(prediction, gaussian_std=1, threshold=0.5)  # .astype(np.uint8)
    mat['masks'][0, 7] = \
        process_pred(prediction, gaussian_std=0.5, threshold=0.5)  # .astype(np.uint8)
    print('Saving mat to {}'.format(output_mat_path))
    savemat(output_mat_path, mat)
    print('Finished.')
Beispiel #4
0
def main(pred_dir,
         config,
         split='test',
         overlap_factor=1,
         preprocess_method=None):
    padding = [16, 16, 8]
    prediction2_dir = os.path.abspath(
        os.path.join(config['base_dir'], 'predictions2', split))
    model = load_old_model(get_last_model_path(config["model_file"]))
    with open(os.path.join(opts.config_dir, 'norm_params.json'), 'r') as f:
        norm_params = json.load(f)

    for sample_folder in glob(os.path.join(pred_dir, split, '*')):
        mask_path = os.path.join(sample_folder, 'prediction.nii.gz')
        truth_path = os.path.join(sample_folder, 'truth.nii.gz')

        subject_id = Path(sample_folder).name
        dest_folder = os.path.join(prediction2_dir, subject_id)
        Path(dest_folder).mkdir(parents=True, exist_ok=True)

        truth = nib.load(truth_path)
        nib.save(truth, os.path.join(dest_folder, Path(truth_path).name))

        mask = nib.load(mask_path)
        mask = process_pred(mask.get_data(), gaussian_std=0.5, threshold=0.5)
        bbox_start, bbox_end = find_bounding_box(mask)
        check_bounding_box(mask, bbox_start, bbox_end)
        if padding is not None:
            bbox_start = np.maximum(bbox_start - padding, 0)
            bbox_end = np.minimum(bbox_end + padding, mask.shape)
        print("BBox: {}-{}".format(bbox_start, bbox_end))

        volume = nib.load(
            os.path.join(original_data_folder, subject_id, 'volume.nii'))
        orig_volume_shape = np.array(volume.get_data().shape)
        volume = cut_bounding_box(volume, bbox_start,
                                  bbox_end).get_data().astype(np.float)

        if preprocess_method is not None:
            print('Applying preprocess by {}...'.format(preprocess_method))
            if preprocess_method == 'window_1_99':
                volume = window_intensities_data(volume)
            else:
                raise Exception(
                    'Unknown preprocess: {}'.format(preprocess_method))

        if norm_params is not None and any(norm_params.values()):
            volume = normalize_data(volume,
                                    mean=norm_params['mean'],
                                    std=norm_params['std'])

        prediction = patch_wise_prediction(model=model,
                                           data=np.expand_dims(volume, 0),
                                           patch_shape=config["patch_shape"] +
                                           [config["patch_depth"]],
                                           overlap_factor=overlap_factor)
        prediction = prediction.squeeze()

        padding2 = list(zip(bbox_start, orig_volume_shape - bbox_end))
        print(padding2)
        prediction = np.pad(prediction,
                            padding2,
                            mode='constant',
                            constant_values=0)
        assert all(
            [s1 == s2 for s1, s2 in zip(prediction.shape, orig_volume_shape)])
        prediction = get_image(prediction)
        nib.save(prediction, os.path.join(dest_folder, Path(mask_path).name))