Beispiel #1
0
    def _evaluateConstTermsPerDihedral(self, parameters):
        # Evaluate MM energies
        const_energies = []
        for idihed in range(self.numDihedrals):
            # Zero the current dihedral values to calculate all other "constant" terms
            modified_parameters = copy.deepcopy(parameters)
            atomtypes = self._dihedral_atomtypes[idihed]
            for term in modified_parameters.dihedral_types[atomtypes]:
                term.phi_k = 0
                assert term.per > 0  # Guard from messing up with improp

            ff = FFEvaluate(self.molecule, modified_parameters)
            scan_coords = self._coords[idihed]
            energies = [
                ff.calculateEnergies(coords[:, :, 0])["total"] for coords in scan_coords
            ]
            const_energies.append(np.array(energies))

        return const_energies
Beispiel #2
0
    def _check(self):

        # Evaluate the fitted energies
        self._fitted_energies = []
        ffeval = FFEvaluate(self.molecule, self.parameters)
        for scan_coords in self._coords:
            energies = [
                ffeval.calculateEnergies(coords[:, :, 0])["total"]
                for coords in scan_coords
            ]
            self._fitted_energies.append(np.array(energies))

        # Check the self-consistency of fitting
        reference_energies = np.concatenate(self._reference_energies)
        reference_energies -= np.mean(reference_energies)
        fitted_energies = np.concatenate(self._fitted_energies)
        fitted_energies -= np.mean(fitted_energies)
        loss = np.sqrt(np.mean((fitted_energies - reference_energies) ** 2))
        # HACK: without searches, the offset is not computed. So the test will not pass!
        if self.num_iterations != 0:
            assert np.isclose(self.loss, loss, rtol=0, atol=1e-2)
Beispiel #3
0
    def _evaluateConstTerms(self):
        """
        Evalutate constant MM terms
        """

        parameters = copy.deepcopy(self.parameters)

        # Disable parameterizable (i.e. non-constant) terms
        for atomtypes in self._dihedral_atomtypes:
            for term in parameters.dihedral_types[atomtypes]:
                term.phi_k = 0
                assert term.per > 0  # Guard from messing up with improper dihedrals

        # Evaluate MM energies
        const_energies = []
        ff = FFEvaluate(self.molecule, parameters)
        for scan_coords in self._coords:
            energies = [
                ff.calculateEnergies(coords[:, :, 0])["total"] for coords in scan_coords
            ]
            const_energies.append(np.array(energies))

        return const_energies
Beispiel #4
0
                          system.forces,
                          returnDetails=True)[0]
    myforces = system.forces.cpu().numpy()[0]

    prm = parmed.charmm.CharmmParameterSet("./tests/water/parameters.prm")
    struct = parmed.charmm.CharmmPsfFile("./tests/water/structure.psf")
    keepForces(prm, struct, mol, forces=ommforceterm)
    omm_energies, omm_forces = openmm_energy(prm,
                                             struct,
                                             mol.coords,
                                             box=mol.box,
                                             cutoff=7.3)

    ffev = FFEvaluate(mol, prm, cutoff=7.3, rfa=True)
    energy, forces_ffev, _ = ffev.calculate(mol.coords, mol.box)
    energy = ffev.calculateEnergies(mol.coords, mol.box)
    forces_ffev = forces_ffev.squeeze()

    def compareForces(forces1, forces2):
        return np.max(np.abs(forces1 - forces2).flatten())

    datastore[forceterm[0]] = {
        "omm": {
            "energy": omm_energies["total"],
            "forces": omm_forces
        },
        "torchmd": {
            "energy": np.sum([x for _, x in Epot.items()]),
            "forces": myforces
        },
        "ffeval": {
Beispiel #5
0
    def _setup(self):

        if len(self.dihedrals) != len(self.qm_results):
            raise ValueError(
                "The number of dihedral and QM result sets has to be the same!"
            )

        # Get dihedral names
        self._names = [
            "-".join(self.molecule.name[dihedral]) for dihedral in self.dihedrals
        ]

        # Get all equivalent dihedrals
        all_equivalent_dihedrals = detectParameterizableDihedrals(self.molecule)
        all_equivalent_dihedrals = {
            tuple(dihedrals[0]): dihedrals for dihedrals in all_equivalent_dihedrals
        }

        # Choose the selected dihedrals
        equivalent_dihedrals = []
        for dihedral, name in zip(self.dihedrals, self._names):
            if tuple(dihedral) not in all_equivalent_dihedrals:
                raise ValueError("{} is not a parameterizable dihedral!".format(name))
            equivalent_dihedrals.append(all_equivalent_dihedrals[tuple(dihedral)])

        # Get dihedral atom types
        self._dihedral_atomtypes = [
            findDihedralType(tuple(self.molecule.atomtype[dihedral]), self.parameters)
            for dihedral in self.dihedrals
        ]

        # Get reference QM energies and rotamer coordinates
        self._reference_energies = []
        self._coords = []
        for results in self.qm_results:
            self._reference_energies.append(
                np.array([result.energy for result in results])
            )
            self._coords.append([result.coords for result in results])

        # Calculate dihedral angle values
        # [# of scans, # of dihedrals, # of conformations, # of equivalents]
        self._angle_values = []
        for scan_coords in self._coords:
            scan_angle_values = []
            for equivalent_indices in equivalent_dihedrals:
                angle_values = []
                for coords in scan_coords:
                    angle_values.append(
                        [
                            dihedralAngle(coords[indices, :, 0])
                            for indices in equivalent_indices
                        ]
                    )
                scan_angle_values.append(np.array(angle_values))
            self._angle_values.append(scan_angle_values)

        # Calculated initial MM energies
        ff = FFEvaluate(self.molecule, self.parameters)
        self._initial_energies = []
        for scan_coords in self._coords:
            energies = [
                ff.calculateEnergies(coords[:, :, 0])["total"] for coords in scan_coords
            ]
            self._initial_energies.append(np.array(energies))

        # Make result directories
        os.makedirs(self.result_directory, exist_ok=True)
Beispiel #6
0
    def retrieve(self):

        ff = FFEvaluate(self.molecule, self._parameters)

        results = []
        for iframe in range(self.molecule.numFrames):
            self.molecule.frame = iframe

            directory = os.path.join(self.directory, "%05d" % iframe)
            os.makedirs(directory, exist_ok=True)
            pickleFile = os.path.join(directory, "data.pkl")

            if self._completed(directory):
                with open(pickleFile, "rb") as fd:
                    result = pickle.load(fd)
                logger.info("Loading QM data from %s" % pickleFile)

            else:
                result = QMResult()
                result.errored = False
                result.coords = self.molecule.coords[:, :,
                                                     iframe:iframe + 1].copy()

                if self.optimize:
                    opt = nlopt.opt(nlopt.LN_COBYLA, result.coords.size)
                    opt.set_min_objective(lambda x, _: ff.calculateEnergies(
                        x.reshape((-1, 3)))["total"])
                    if self.restrained_dihedrals is not None:
                        for dihedral in self.restrained_dihedrals:
                            indices = dihedral.copy()
                            ref_angle = dihedralAngle(
                                self.molecule.coords[indices, :, iframe])

                            def constraint(x, _):
                                coords = x.reshape((-1, 3))
                                angle = dihedralAngle(coords[indices])
                                return np.sin(0.5 * (angle - ref_angle))

                            opt.add_equality_constraint(constraint)
                    opt.set_xtol_abs(1e-3)  # Similar to Psi4 default
                    opt.set_maxeval(1000 * opt.get_dimension())
                    opt.set_initial_step(1e-3)
                    result.coords = opt.optimize(
                        result.coords.ravel()).reshape((-1, 3, 1))
                    logger.info("Optimization status: %d" %
                                opt.last_optimize_result())

                result.energy = ff.calculateEnergies(result.coords[:, :,
                                                                   0])["total"]
                result.dipole = getDipole(self.molecule)

                if self.optimize:
                    assert (opt.last_optimum_value() == result.energy
                            )  # A self-consistency test

                # Compute ESP values
                if self.esp_points is not None:
                    assert self.molecule.numFrames == 1
                    result.esp_points = self.esp_points
                    distances = cdist(result.esp_points,
                                      result.coords[:, :, 0])  # Angstrom
                    distances *= (const.physical_constants["Bohr radius"][0] /
                                  const.angstrom)  # Angstrom --> Bohr
                    result.esp_values = np.dot(
                        np.reciprocal(distances),
                        self.molecule.charge)  # Hartree/Bohr

                with open(pickleFile, "wb") as fd:
                    pickle.dump(result, fd)

            results.append(result)

        return results