def ffsampling_fft(t, T, sigmin, randombytes): """Compute the ffsampling of t, using T as auxilary information. Args: t: a vector T: a ldl decomposition tree Format: FFT Corresponds to algorithm 11 (ffSampling) of Falcon's documentation. """ n = len(t[0]) * fft_ratio z = [0, 0] if (n > 1): l10, T0, T1 = T z[1] = merge_fft( ffsampling_fft(split_fft(t[1]), T1, sigmin, randombytes)) t0b = add_fft(t[0], mul_fft(sub_fft(t[1], z[1]), l10)) z[0] = merge_fft( ffsampling_fft(split_fft(t0b), T0, sigmin, randombytes)) return z elif (n == 1): z[0] = [samplerz(t[0][0].real, T[0], sigmin, randombytes)] z[1] = [samplerz(t[1][0].real, T[0], sigmin, randombytes)] return z
def ffldl_fft(G): """ Compute the ffLDL decomposition tree of G. Input: G A Gram matrix Output: T The ffLDL decomposition tree of G Format: FFT Similar to algorithm ffLDL of Falcon's documentation. """ m = len(G) - 1 d = len(G[0][0]) * fft_ratio # LDL decomposition L, D = ldl_fft(G) # General case if (d > 2): rep = [L] for i in range(m + 1): # Split the output d0, d1 = split_fft(D[i][i]) Gi = [[d0, d1], [adj_fft(d1), d0]] # Recursive call on the split parts rep += [ffldl_fft(Gi)] return rep # Bottom case elif (d == 2): # Each element is real return [L, D[0][0], D[1][1]]
def ffnp_fft(t, T): """ Compute the FFNP reduction of t, using T as auxilary information. Input: t A vector T The LDL decomposition tree of an (implicit) matrix G Output: z An integer vector such that (t - z) * B is short Format: FFT """ m = len(t) n = len(t[0]) * fft_ratio z = [None] * m # General case if (n > 1): L = T[0] for i in range(m - 1, -1, -1): # t[i] is "corrected", taking into accounts the t[j], z[j] (j > i) tib = t[i][:] for j in range(m - 1, i, -1): tib = add_fft(tib, mul_fft(sub_fft(t[j], z[j]), L[j][i])) # Recursive call z[i] = merge_fft(ffnp_fft(split_fft(tib), T[i + 1])) return z # Bottom case: round each coefficient in parallel elif (n == 1): z[0] = [round(t[0][0].real)] z[1] = [round(t[1][0].real)] return z
def ffnp_fft(t, T): """Compute the ffnp reduction of t, using T as auxilary information. Args: t: a vector T: a ldl decomposition tree Format: FFT """ n = len(t[0]) * fft_ratio z = [0, 0] if (n > 1): l10, T0, T1 = T z[1] = merge_fft(ffnp_fft(split_fft(t[1]), T1)) t0b = add_fft(t[0], mul_fft(sub_fft(t[1], z[1]), l10)) z[0] = merge_fft(ffnp_fft(split_fft(t0b), T0)) return z elif (n == 1): z[0] = [round(t[0][0].real)] z[1] = [round(t[1][0].real)] return z
def ffldl_fft(G): """Compute the ffLDL decomposition tree of G. Args: G: a Gram matrix Format: FFT Corresponds to algorithm 9 (ffLDL) of Falcon's documentation. """ n = len(G[0][0]) * fft_ratio L, D = ldl_fft(G) # Coefficients of L, D are elements of R[x]/(x^n - x^(n/2) + 1), in FFT representation if (n > 2): # A bisection is done on elements of a 2*2 diagonal matrix. d00, d01 = split_fft(D[0][0]) d10, d11 = split_fft(D[1][1]) G0 = [[d00, d01], [adj_fft(d01), d00]] G1 = [[d10, d11], [adj_fft(d11), d10]] return [L[1][0], ffldl_fft(G0), ffldl_fft(G1)] elif (n == 2): # End of the recursion (each element is real). return [L[1][0], D[0][0], D[1][1]]
def ffsampling_fft(t, T): """ Compute the fast Fourier sampling of t, using T as auxilary information. Input: t A vector T The LDL decomposition tree of an (implicit) matrix G Output: z An integer vector such that (t - z) * B is short Format: FFT This algorithim is a randomized version of ffnp_fft, such that z * B is distributed as a spherical Gaussian centered around t * B. """ m = len(t) n = len(t[0]) * fft_ratio z = [None] * m # General case if (n > 1): L = T[0] for i in range(m - 1, -1, -1): # t[i] is "corrected", taking into accounts the t[j], z[j] (j > i) tib = t[i][:] for j in range(m - 1, i, -1): tib = add_fft(tib, mul_fft(sub_fft(t[j], z[j]), L[j][i])) # Recursive call z[i] = merge_fft(ffsampling_fft(split_fft(tib), T[i + 1])) return z # Bottom case: round each coefficient in parallel elif (n == 1): z[0] = [sampler_z(T[0], t[0][0].real)] z[1] = [sampler_z(T[0], t[1][0].real)] return z