Beispiel #1
0
 def check_definition(self):
     x = [1, 2, 3, 4 + 1j, 1, 2, 3, 4 + 2j]
     y = fft(x)
     y1 = direct_dft(x)
     assert_array_almost_equal(y, y1)
     x = [1, 2, 3, 4 + 0j, 5]
     assert_array_almost_equal(fft(x), direct_dft(x))
Beispiel #2
0
 def check_shape_axes_argument(self):
     small_x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
     large_x1 = array([[1, 2, 3, 0], [4, 5, 6, 0], [7, 8, 9, 0], [0, 0, 0, 0]])
     y = fftn(small_x, shape=(4, 4), axes=(-1,))
     for i in range(4):
         assert_array_almost_equal(y[i], fft(large_x1[i]))
     y = fftn(small_x, shape=(4, 4), axes=(-2,))
     for i in range(4):
         assert_array_almost_equal(y[:, i], fft(large_x1[:, i]))
     y = fftn(small_x, shape=(4, 4), axes=(-2, -1))
     assert_array_almost_equal(y, fftn(large_x1))
     y = fftn(small_x, shape=(4, 4), axes=(-1, -2))
     assert_array_almost_equal(y, swapaxes(fftn(swapaxes(large_x1, -1, -2)), -1, -2))
def direct_shift(x,a,period=None):
    n = len(x)
    if period is None:
        k = fftfreq(n)*1j*n
    else:
        k = fftfreq(n)*2j*pi/period*n
    return ifft(fft(x)*exp(k*a)).real
Beispiel #4
0
 def _check_n_argument_complex(self):
     x1 = [1, 2, 3, 4 + 1j]
     x2 = [1, 2, 3, 4 + 1j]
     y = fft([x1, x2], n=4)
     assert_equal(y.shape, (2, 4))
     assert_array_almost_equal(y[0], direct_dft(x1))
     assert_array_almost_equal(y[1], direct_dft(x2))
def direct_itilbert(x,h=1,period=None):
    fx = fft(x)
    n = len (fx)
    if period is None:
        period = 2*pi
    w = fftfreq(n)*h*2*pi/period*n
    w = -1j*tanh(w)
    return ifft(w*fx)
def direct_tilbert(x,h=1,period=None):
    fx = fft(x)
    n = len (fx)
    if period is None:
        period = 2*pi
    w = fftfreq(n)*h*2*pi/period*n
    w[0] = 1
    w = 1j/tanh(w)
    w[0] = 0j
    return ifft(w*fx)
Beispiel #7
0
    def bench_random(self, level=5):
        from numpy.fft import fft as numpy_fft

        print
        print "                 Fast Fourier Transform"
        print "================================================="
        print "      |    real input     |   complex input    "
        print "-------------------------------------------------"
        print " size |  scipy  |  numpy  |  scipy  |  numpy "
        print "-------------------------------------------------"
        for size, repeat in [
            (100, 7000),
            (1000, 2000),
            (256, 10000),
            (512, 10000),
            (1024, 1000),
            (2048, 1000),
            (2048 * 2, 500),
            (2048 * 4, 500),
        ]:
            print "%5s" % size,
            sys.stdout.flush()

            for x in [
                random([size]).astype(double),
                random([size]).astype(cdouble) + random([size]).astype(cdouble) * 1j,
            ]:
                if size > 500:
                    y = fft(x)
                else:
                    y = direct_dft(x)
                assert_array_almost_equal(fft(x), y)
                print "|%8.2f" % self.measure("fft(x)", repeat),
                sys.stdout.flush()

                assert_array_almost_equal(numpy_fft(x), y)
                print "|%8.2f" % self.measure("numpy_fft(x)", repeat),
                sys.stdout.flush()

            print " (secs for %s calls)" % (repeat)
        sys.stdout.flush()
def direct_diff(x,k=1,period=None):
    fx = fft(x)
    n = len (fx)
    if period is None:
        period = 2*pi
    w = fftfreq(n)*2j*pi/period*n
    if k<0:
        w = 1 / w**k
        w[0] = 0.0
    else:
        w = w**k
    if n>2000:
        w[250:n-250] = 0.0
    return ifft(w*fx).real
def direct_hilbert(x):
    fx = fft(x)
    n = len (fx)
    w = fftfreq(n)*n
    w = 1j*sign(w)
    return ifft(w*fx)
Beispiel #10
0
def direct_dftn(x):
    x = asarray(x)
    for axis in range(len(x.shape)):
        x = fft(x, axis=axis)
    return x
Beispiel #11
0
    def check_axes_argument(self):
        # plane == ji_plane, x== kji_space
        plane1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
        plane2 = [[10, 11, 12], [13, 14, 15], [16, 17, 18]]
        plane3 = [[19, 20, 21], [22, 23, 24], [25, 26, 27]]
        ki_plane1 = [[1, 2, 3], [10, 11, 12], [19, 20, 21]]
        ki_plane2 = [[4, 5, 6], [13, 14, 15], [22, 23, 24]]
        ki_plane3 = [[7, 8, 9], [16, 17, 18], [25, 26, 27]]
        jk_plane1 = [[1, 10, 19], [4, 13, 22], [7, 16, 25]]
        jk_plane2 = [[2, 11, 20], [5, 14, 23], [8, 17, 26]]
        jk_plane3 = [[3, 12, 21], [6, 15, 24], [9, 18, 27]]
        kj_plane1 = [[1, 4, 7], [10, 13, 16], [19, 22, 25]]
        kj_plane2 = [[2, 5, 8], [11, 14, 17], [20, 23, 26]]
        kj_plane3 = [[3, 6, 9], [12, 15, 18], [21, 24, 27]]
        ij_plane1 = [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
        ij_plane2 = [[10, 13, 16], [11, 14, 17], [12, 15, 18]]
        ij_plane3 = [[19, 22, 25], [20, 23, 26], [21, 24, 27]]
        ik_plane1 = [[1, 10, 19], [2, 11, 20], [3, 12, 21]]
        ik_plane2 = [[4, 13, 22], [5, 14, 23], [6, 15, 24]]
        ik_plane3 = [[7, 16, 25], [8, 17, 26], [9, 18, 27]]
        ijk_space = [jk_plane1, jk_plane2, jk_plane3]
        ikj_space = [kj_plane1, kj_plane2, kj_plane3]
        jik_space = [ik_plane1, ik_plane2, ik_plane3]
        jki_space = [ki_plane1, ki_plane2, ki_plane3]
        kij_space = [ij_plane1, ij_plane2, ij_plane3]
        x = array([plane1, plane2, plane3])

        assert_array_almost_equal(fftn(x), fftn(x, axes=(-3, -2, -1)))  # kji_space
        assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2)))
        y = fftn(x, axes=(2, 1, 0))  # ijk_space
        assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space))
        y = fftn(x, axes=(2, 0, 1))  # ikj_space
        assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2), fftn(ikj_space))
        y = fftn(x, axes=(1, 2, 0))  # jik_space
        assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2), fftn(jik_space))
        y = fftn(x, axes=(1, 0, 2))  # jki_space
        assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space))
        y = fftn(x, axes=(0, 2, 1))  # kij_space
        assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space))

        y = fftn(x, axes=(-2, -1))  # ji_plane
        assert_array_almost_equal(fftn(plane1), y[0])
        assert_array_almost_equal(fftn(plane2), y[1])
        assert_array_almost_equal(fftn(plane3), y[2])
        y = fftn(x, axes=(1, 2))  # ji_plane
        assert_array_almost_equal(fftn(plane1), y[0])
        assert_array_almost_equal(fftn(plane2), y[1])
        assert_array_almost_equal(fftn(plane3), y[2])
        y = fftn(x, axes=(-3, -2))  # kj_plane
        assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0])
        assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1])
        assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2])
        y = fftn(x, axes=(-3, -1))  # ki_plane
        assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :])
        assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :])
        assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :])
        y = fftn(x, axes=(-1, -2))  # ij_plane
        assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1))
        assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1))
        assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1))
        y = fftn(x, axes=(-1, -3))  # ik_plane
        assert_array_almost_equal(fftn(ik_plane1), swapaxes(y[:, 0, :], -1, -2))
        assert_array_almost_equal(fftn(ik_plane2), swapaxes(y[:, 1, :], -1, -2))
        assert_array_almost_equal(fftn(ik_plane3), swapaxes(y[:, 2, :], -1, -2))
        y = fftn(x, axes=(-2, -3))  # jk_plane
        assert_array_almost_equal(fftn(jk_plane1), swapaxes(y[:, :, 0], -1, -2))
        assert_array_almost_equal(fftn(jk_plane2), swapaxes(y[:, :, 1], -1, -2))
        assert_array_almost_equal(fftn(jk_plane3), swapaxes(y[:, :, 2], -1, -2))

        y = fftn(x, axes=(-1,))  # i_line
        for i in range(3):
            for j in range(3):
                assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :])
        y = fftn(x, axes=(-2,))  # j_line
        for i in range(3):
            for j in range(3):
                assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j])
        y = fftn(x, axes=(0,))  # k_line
        for i in range(3):
            for j in range(3):
                assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j])

        y = fftn(x, axes=())  # point
        assert_array_almost_equal(y, x)
Beispiel #12
0
 def check_random_real(self):
     for size in [1, 51, 111, 100, 200, 64, 128, 256, 1024]:
         x = random([size]).astype(double)
         assert_array_almost_equal(ifft(fft(x)), x)
         assert_array_almost_equal(fft(ifft(x)), x)