Beispiel #1
0
def test_dynamic():

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, name='dyn_spin', driver='llg_stt_cpp')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.driver.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m((0.8, 0, -1))

    Kx = Anisotropy(Ku=-0.05, axis=(0, 0, 1), name='Kz')
    sim.add(Kx)

    sim.p = (0, 0, 1)

    sim.a_J = 0.0052
    sim.alpha = 0.1

    ts = np.linspace(0, 1200, 401)
    for t in ts:
        sim.driver.run_until(t)

    mz = sim.spin[2]
    alpha, K, u = 0.1, 0.05, 0.0052
    print(mz, u / (2 * alpha * K))

    #########################################################
    # The system used in this test can be solved analytically, which gives that mz = u/(2*alpha*K),
    # where K represents the easy-plane anisotropy.
    ###
    assert abs(mz - u / (2 * alpha * K)) / mz < 5e-4
def test_dynamic():

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, name='dyn_spin', driver='llg_stt_cpp')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.driver.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m((0.8,0,-1))

    Kx = Anisotropy(Ku=-0.05, axis=(0, 0, 1), name='Kz')
    sim.add(Kx)

    sim.p = (0,0,1)

    sim.a_J = 0.0052
    sim.alpha = 0.1

    ts = np.linspace(0, 1200, 401)
    for t in ts:
        sim.driver.run_until(t)


    mz = sim.spin[2]
    alpha, K, u = 0.1, 0.05, 0.0052
    print(mz, u/(2*alpha*K))

    #########################################################
    # The system used in this test can be solved analytically, which gives that mz = u/(2*alpha*K),
    # where K represents the easy-plane anisotropy.
    ###
    assert abs(mz - u/(2*alpha*K))/mz< 5e-4
Beispiel #3
0
def dynamic(mesh):

    sim = Sim(mesh, name='dyn', driver='slonczewski')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.driver.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(np.load('m0.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    Kx = Anisotropy(Ku=0.005, axis=(1, 0, 0), name='Kx')
    sim.add(Kx)

    sim.p = (0, 0, 1)

    sim.u0 = 0.03
    sim.driver.alpha = 0.1

    ts = np.linspace(0, 1e3, 101)
    for t in ts:
        sim.run_until(t)
        sim.save_vtk()
        print t
Beispiel #4
0
def dynamic(mesh):

    sim = Sim(mesh, name='dyn', driver='slonczewski')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m(np.load('m0.npy'))

    J = 1.0
    exch = UniformExchange(J)
    sim.add(exch)

    Kx = Anisotropy(Ku=0.005, axis=(1, 0, 0), name='Kx')
    sim.add(Kx)

    sim.p = (0,0,1)

    sim.u0 = 0.03
    sim.alpha = 0.1

    ts = np.linspace(0, 1e3, 101)
    for t in ts:
        sim.run_until(t)
        sim.save_vtk()
        print t
def dynamic(mesh):

    sim = Sim(mesh, name='dyn_spin', driver='slonczewski')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.driver.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m((0.8,0,-1))

    Kx = Anisotropy(Ku=-0.05, axis=(0, 0, 1), name='Kz')
    sim.add(Kx)

    sim.p = (0,0,1)

    sim.u0 = 0.005
    sim.driver.alpha = 0.1

    ts = np.linspace(0, 1200, 401)
    for t in ts:
        sim.run_until(t)
        #sim.save_vtk()
        print t
Beispiel #6
0
def dynamic(mesh):

    sim = Sim(mesh, name='dyn_spin', driver='slonczewski')
    # sim.set_options(rtol=1e-10,atol=1e-14)
    sim.gamma = 1.0
    sim.mu_s = 1.0

    sim.set_m((0.8, 0, -1))

    Kx = Anisotropy(Ku=-0.05, axis=(0, 0, 1), name='Kz')
    sim.add(Kx)

    sim.p = (0, 0, 1)

    sim.u0 = 0.005
    sim.alpha = 0.1

    ts = np.linspace(0, 1200, 401)
    for t in ts:
        sim.run_until(t)
        #sim.save_vtk()
        print t