Beispiel #1
0
    def search(self):
        '''Top level search.
        '''
        logger.debug("Start searching...")
        logger.debug(self.get_info())

        self.logwriter = LogWriter(
            '%s/%s.log' %
            (self.out_dir.rstrip('/'),
             self.data_handle.data_list[0].filename.split('/')[-1].replace(
                 '.h5', '').replace('.fits', '').replace('.fil', '')))
        self.filewriter = FileWriter(
            '%s/%s.dat' %
            (self.out_dir.rstrip('/'),
             self.data_handle.data_list[0].filename.split('/')[-1].replace(
                 '.h5', '').replace('.fits', '').replace('.fil', '')),
            self.data_handle.data_list[0].header)

        logger.info("Start ET search for %s" %
                    self.data_handle.data_list[0].filename)
        self.logwriter.info("Start ET search for %s" %
                            (self.data_handle.data_list[0].filename))

        for ii, target_data_obj in enumerate(self.data_handle.data_list):
            self.search_data(target_data_obj)
            ##EE-benshmark            cProfile.runctx('self.search_data(target_data_obj)',globals(),locals(),filename='profile_M%2.1f_S%2.1f_t%i'%(self.max_drift,self.snr,int(os.times()[-1])))

            #----------------------------------------
            #Closing instance. Collect garbage.
            self.data_handle.data_list[ii].close()
            gc.collect()
Beispiel #2
0
class FinDoppler:
    """ """
    def __init__(self, datafile, max_drift, min_drift = 0, snr = 25.0, out_dir = './', coarse_chans = None, obs_info = None, flagging = None):
        self.min_drift = min_drift
        self.max_drift = max_drift
        self.snr = snr
        self.out_dir = out_dir
        self.data_handle = DATAHandle(datafile,out_dir=out_dir)
        if (self.data_handle is None) or (self.data_handle.status is False):
            raise IOError("File error, aborting...")
        if coarse_chans:
            if int(coarse_chans[-1]) > len(self.data_handle.data_list) or int(coarse_chans[0]) > len(self.data_handle.data_list):
                raise ValueError('The coarse channel(s) given (%i,%i) is outside the possible range (0,%i) '%(int(coarse_chans[0]),int(coarse_chans[-1]),len(self.data_handle.data_list)))
            if int(coarse_chans[-1]) < 0 or int(coarse_chans[0]) < 0:
                raise ValueError('The coarse channel(s) given (%i,%i) is outside the possible range (0,%i) '%(int(coarse_chans[0]),int(coarse_chans[-1]),len(self.data_handle.data_list)))
            self.data_handle.data_list = self.data_handle.data_list[int(coarse_chans[0]):int(coarse_chans[-1])]
        logger.info(self.data_handle.get_info())
        logger.info("A new FinDoppler instance created!")
        self.obs_info = obs_info
        self.status = True
        self.flagging = flagging

    def get_info(self):
        info_str = "File: %s\n drift rates (min, max): (%f, %f)\n SNR: %f\n"%(self.data_handle.filename, self.min_drift, self.max_drift,self.snr)
        return info_str

    def search(self):
        '''Top level search.
        '''
        logger.debug("Start searching...")
        logger.debug(self.get_info())

        self.logwriter = LogWriter('%s/%s.log'%(self.out_dir.rstrip('/'), self.data_handle.data_list[0].filename.split('/')[-1].replace('.h5','').replace('.fits','').replace('.fil','')))
        self.filewriter = FileWriter('%s/%s.dat'%(self.out_dir.rstrip('/'), self.data_handle.data_list[0].filename.split('/')[-1].replace('.h5','').replace('.fits','').replace('.fil','')),self.data_handle.data_list[0].header)

        logger.info("Start ET search for %s"%self.data_handle.data_list[0].filename)
        self.logwriter.info("Start ET search for %s"%(self.data_handle.data_list[0].filename))

        for ii,target_data_obj in enumerate(self.data_handle.data_list):
            self.search_data(target_data_obj)
##EE-benshmark            cProfile.runctx('self.search_data(target_data_obj)',globals(),locals(),filename='profile_M%2.1f_S%2.1f_t%i'%(self.max_drift,self.snr,int(os.times()[-1])))

            #----------------------------------------
            #Closing instance. Collect garbage.
            self.data_handle.data_list[ii].close()
            gc.collect()

    def search_data(self, data_obj):
        '''
        '''

        try:
            logger.info("Start searching for coarse channel: %s"%data_obj.header[u'coarse_chan'])
            self.logwriter.info("Start searching for %s ; coarse channel: %i "%(data_obj.filename,data_obj.header[u'coarse_chan']))
        except:
            logger.info("Start searching for coarse channel: %s"%data_obj.header[b'coarse_chan'])
            self.logwriter.info("Start searching for %s ; coarse channel: %i "%(data_obj.filename,data_obj.header[b'coarse_chan'])) 
        spectra, drift_indices = data_obj.load_data()
        tsteps = data_obj.tsteps
        tsteps_valid = data_obj.tsteps_valid
        tdwidth = data_obj.tdwidth
        fftlen = data_obj.fftlen
        nframes = tsteps_valid
        shoulder_size = data_obj.shoulder_size

        if self.flagging:
            ##EE This flags the edges of the PFF for BL data (with 3Hz res per channel).
            ##EE The PFF flat profile falls after around 100k channels.
            ##EE But it falls slowly enough that could use 50-80k channels.
            median_flag = np.median(spectra)
#             spectra[:,:80000] = median_flag/float(tsteps)
#             spectra[:,-80000:] = median_flag/float(tsteps)

            ##EE Flagging spikes in time series.
            time_series=spectra.sum(axis=1)
            time_series_median = np.median(time_series)
            mask=(time_series-time_series_median)/time_series.std() > 10   #Flagging spikes > 10 in SNR

            if mask.any():
                self.logwriter.info("Found spikes in the time series. Removing ...")
                spectra[mask,:] = time_series_median/float(fftlen)  # So that the value is not the median in the time_series.

        else:
            median_flag = np.array([0])

        # allocate array for findopplering
        # init findopplering array to zero
        tree_findoppler = np.zeros(tsteps * tdwidth,dtype=np.float64) + median_flag

        # allocate array for holding original
        # Allocates array in a fast way (without initialize)
        tree_findoppler_original = np.empty_like(tree_findoppler)

        #/* allocate array for negative doppler rates */
        tree_findoppler_flip = np.empty_like(tree_findoppler)

        #/* build index mask for in-place tree doppler correction */
        ibrev = np.zeros(tsteps, dtype=np.int32)

        for i in range(0, tsteps):
            ibrev[i] = bitrev(i, int(np.log2(tsteps)))

##EE: should double check if tdwidth is really better than fftlen here.
        max_val = max_vals()
        if max_val.maxsnr == None:
            max_val.maxsnr = np.zeros(tdwidth, dtype=np.float64)
        if max_val.maxdrift == None:
            max_val.maxdrift = np.zeros(tdwidth, dtype=np.float64)
        if max_val.maxsmooth == None:
            max_val.maxsmooth = np.zeros(tdwidth, dtype='uint8')
        if max_val.maxid == None:
            max_val.maxid = np.zeros(tdwidth, dtype='uint32')
        if max_val.total_n_hits == None:
            max_val.total_n_hits = 0

##EE-debuging
#         hist_val = hist_vals()
#         hist_len = int(np.ceil(2*(self.max_drift-self.min_drift)/data_obj.drift_rate_resolution))
#         if hist_val.histsnr == None:
#             hist_val.histsnr = np.zeros((hist_len,tdwidth), dtype=np.float64)
#         if hist_val.histdrift == None:
#             hist_val.histdrift = np.zeros((hist_len), dtype=np.float64)
#         if hist_val.histid == None:
#             hist_val.histid = np.zeros(tdwidth, dtype='uint32')

        #EE: Making "shoulders" to avoid "edge effects". Could do further testing.
        specstart = int(tsteps*shoulder_size/2)
        specend = tdwidth - (tsteps * shoulder_size)

        #--------------------------------
        #Stats calc
        self.the_mean_val, self.the_stddev = comp_stats(spectra.sum(axis=0))

        #--------------------------------
        #Looping over drift_rate_nblock
        #--------------------------------
        drift_rate_nblock = int(np.floor(self.max_drift / (data_obj.drift_rate_resolution*tsteps_valid)))

##EE-debuging        kk = 0

        for drift_block in range(-1*drift_rate_nblock,drift_rate_nblock+1):
            logger.debug( "Drift_block %i"%drift_block)

            #----------------------------------------------------------------------
            # Negative drift rates search.
            #----------------------------------------------------------------------
            if drift_block <= 0:

                #Populates the findoppler tree with the spectra
                populate_tree(spectra,tree_findoppler,nframes,tdwidth,tsteps,fftlen,shoulder_size,roll=drift_block,reverse=1)

                #/* populate original array */
                np.copyto(tree_findoppler_original, tree_findoppler)

                #/* populate neg doppler array */
                np.copyto(tree_findoppler_flip, tree_findoppler_original)
                
                #/* Flip matrix across X dimension to search negative doppler drift rates */
                FlipX(tree_findoppler_flip, tdwidth, tsteps)
                logger.info("Doppler correcting reverse...")
                tt.taylor_flt(tree_findoppler_flip, tsteps * tdwidth, tsteps)
                logger.debug( "done...")
                
                complete_drift_range = data_obj.drift_rate_resolution*np.array(range(-1*tsteps_valid*(np.abs(drift_block)+1)+1,-1*tsteps_valid*(np.abs(drift_block))+1))
                for k,drift_rate in enumerate(complete_drift_range[(complete_drift_range<self.min_drift) & (complete_drift_range>=-1*self.max_drift)]):
                    # indx  = ibrev[drift_indices[::-1][k]] * tdwidth
                    indx  = ibrev[drift_indices[::-1][(complete_drift_range<self.min_drift) & (complete_drift_range>=-1*self.max_drift)][k]] * tdwidth

                    #/* SEARCH NEGATIVE DRIFT RATES */
                    spectrum = tree_findoppler_flip[indx: indx + tdwidth]

                    #/* normalize */
                    spectrum -= self.the_mean_val
                    spectrum /= self.the_stddev

                    #Reverse spectrum back
                    spectrum = spectrum[::-1]

##EE old wrong use of reverse            n_hits, max_val = hitsearch(spectrum, specstart, specend, self.snr, drift_rate, data_obj.header, fftlen, tdwidth, channel, max_val, 1)
                    n_hits, max_val = hitsearch(spectrum, specstart, specend, self.snr, drift_rate, data_obj.header, fftlen, tdwidth, max_val, 0)
                    info_str = "Found %d hits at drift rate %15.15f\n"%(n_hits, drift_rate)
                    max_val.total_n_hits += n_hits
                    logger.debug(info_str)
                    self.logwriter.info(info_str)

##EE-debuging                    np.save(self.out_dir + '/spectrum_dr%f.npy'%(drift_rate),spectrum)

##EE-debuging                    hist_val.histsnr[kk] = spectrum
##EE-debuging                    hist_val.histdrift[kk] = drift_rate
##EE-debuging                    kk+=1

            #----------------------------------------------------------------------
            # Positive drift rates search.
            #----------------------------------------------------------------------
            if drift_block >= 0:

                #Populates the findoppler tree with the spectra
                populate_tree(spectra,tree_findoppler,nframes,tdwidth,tsteps,fftlen,shoulder_size,roll=drift_block,reverse=1)

                #/* populate original array */
                np.copyto(tree_findoppler_original, tree_findoppler)

                logger.info("Doppler correcting forward...")
                tt.taylor_flt(tree_findoppler, tsteps * tdwidth, tsteps)
                logger.debug( "done...")
                if (tree_findoppler == tree_findoppler_original).all():
                     logger.error("taylor_flt has no effect?")
                else:
                     logger.debug("tree_findoppler changed")

                ##EE: Calculates the range of drift rates for a full drift block.
                complete_drift_range = data_obj.drift_rate_resolution*np.array(range(tsteps_valid*(drift_block),tsteps_valid*(drift_block +1)))

                for k,drift_rate in enumerate(complete_drift_range[(complete_drift_range>=self.min_drift) & (complete_drift_range<=self.max_drift)]):

                    indx  = ibrev[drift_indices[k]] * tdwidth
                    #/* SEARCH POSITIVE DRIFT RATES */
                    spectrum = tree_findoppler[indx: indx+tdwidth]

                    #/* normalize */
                    spectrum -= self.the_mean_val
                    spectrum /= self.the_stddev

                    n_hits, max_val = hitsearch(spectrum, specstart, specend, self.snr, drift_rate, data_obj.header, fftlen, tdwidth, max_val, 0)
                    info_str = "Found %d hits at drift rate %15.15f\n"%(n_hits, drift_rate)
                    max_val.total_n_hits += n_hits
                    logger.debug(info_str)
                    self.logwriter.info(info_str)

                    #-------

##EE-debuging                    np.save(self.out_dir + '/spectrum_dr%f.npy'%(drift_rate),spectrum)

##EE-debuging                    hist_val.histsnr[kk] = spectrum
##EE-debuging                    hist_val.histdrift[kk] = drift_rate
##EE-debuging                    kk+=1
        #-------
##EE-debuging        np.save(self.out_dir + '/histsnr.npy', hist_val.histsnr)
##EE-debuging        np.save(self.out_dir + '/histdrift.npy', hist_val.histdrift)

        #----------------------------------------
        # Writing the top hits to file.

#         self.filewriter.report_coarse_channel(data_obj.header,max_val.total_n_hits)
        self.filewriter = tophitsearch(tree_findoppler_original, max_val, tsteps, nframes, data_obj.header, tdwidth, fftlen, self.max_drift,data_obj.obs_length, out_dir = self.out_dir, logwriter=self.logwriter, filewriter=self.filewriter, obs_info = self.obs_info)
        try:
            logger.info("Total number of candidates for coarse channel "+ str(data_obj.header[u'coarse_chan']) +" is: %i"%max_val.total_n_candi)
        except:
            logger.info("Total number of candidates for coarse channel "+ str(data_obj.header[b'coarse_chan']) +" is: %i"%max_val.total_n_candi)