def run_from_direcotry(path): fs = filetools.find_files(path, ext='.png') files = [path + '/' + f for f in fs] for d in range(1, len(files)): v = files[d] print(v) run_from_image_path(v)
examples = [] save_dir = base_dir + '../../' img_ext = '.JPG' img_ext2 = '.jpg' plant_test = [] plant_train = [] for x in range(len(plants)): disease_test = [] disease_train = [] for y in range(len(diseases[x])): # print("%s %s"%(plants[x],diseases[x][y])) # Find the files that conform to given plant cat X and disease cat Y file_list = filetools.find_files(base_dir + '/' + director[x][y] + '/', img_ext) file_list = file_list + filetools.find_files( base_dir + '/' + director[x][y] + '/', img_ext2) # Create image / label tuples img_lab_l = [(base_dir + '/' + director[x][y] + '/' + f, x, y) for f in file_list] # print("%s %s has %d examples..."%(plants[x],diseases[x][y],len(file_list))) # Determine the number of testing examples test_len = len(file_list) * 3 // 10 # Create a test list test_list = img_lab_l[:test_len] # Create a train list starting from the end of the test list train_list = img_lab_l[test_len:] # Append these lists to the running plant list. print("%s & %s & %d & %d" % (plants[x], diseases[x][y], len(test_list), len(train_list)))
# Image Mover # This is a simple script to move files into an image directory. import os import time import filetools as ft directory = 'F:/Greenthumb_Vision/network_log/tensorlogs/26_Feb_2018_21_00_TEST/Images/' files = ft.find_files(directory, ext='.png') x = 0 num = len(files) for f in files: x += 1 # os.rename(directory + f, directory + 'Images/' + f) os.remove(directory + f) # time.sleep(.005) if x % 1000 == 0: print("%d / %d, %.2f%%" % (x, num, (x / num)))