def welch_pw2(img, win_size=512, overlp_x=50, overlp_y=50, edge_x=0, edge_y=0):
	""" 
		Calculate the power spectrum using Welch periodograms (overlapped periodogram)
	"""
	from fundamentals import window2d, ramp
	from EMAN2 import periodogram
	nx = img.get_xsize()
	ny = img.get_ysize()
	nx_fft = smallprime(nx)
	ny_fft = smallprime(ny)
	img1 = window2d(img,nx_fft,ny_fft,"l")
	x_gaussian_hi = 1./win_size
	del img
	from filter    import filt_gaussh
	from utilities import info, drop_image	
	e_fil = filt_gaussh(img1, x_gaussian_hi)
	x38 = 100/(100-overlp_x) # normalization of % of the overlap in x 
	x39 = 100/(100-overlp_y) # normalization of % of the overlap in y
	x26 = int(x38*((nx-2*edge_x)/win_size-1)+1)  # number of pieces horizontal dim.(X)
	x29 = int(x39*((ny-2*edge_y)/win_size-1)+1)  # number of pieces vertical dim.(Y)
	iz = 0	
	pw2 = EMData()
	for iy in xrange(1, x29+1):	
		x21 = (win_size/x39)*(iy-1) + edge_y  #  y-direction it should start from 0 if edge_y=0	      
		for ix in  xrange(1, x26+1):			 
			x22 = (win_size/x38)*(ix-1) + edge_x  # x-direction it should start from 0 if edge_x =0
			wi  = window2d(e_fil, win_size, win_size, "l", x22, x21)
			ra  = ramp(wi)
			iz  = iz+1
			if (iz == 1): pw2  = periodogram(ra)
			else:         pw2 += periodogram(ra)
	return  pw2/float(iz)
Beispiel #2
0
def welch_pw2(img, win_size=512, overlp_x=50, overlp_y=50, edge_x=0, edge_y=0):
	""" 
		Calculate the power spectrum using Welch periodograms (overlapped periodogram)
	"""
	from fundamentals import window2d, ramp
	from EMAN2 import periodogram
	nx = img.get_xsize()
	ny = img.get_ysize()
	nx_fft = smallprime(nx)
	ny_fft = smallprime(ny)
	x_gaussian_hi = 1./win_size
	from filter    import filt_gaussh
	e_fil = filt_gaussh(window2d(img,nx_fft,ny_fft,"l"), x_gaussian_hi)
	x38 = 100/(100-overlp_x) # normalization of % of the overlap in x 
	x39 = 100/(100-overlp_y) # normalization of % of the overlap in y
	x26 = int(x38*((nx-2*edge_x)/win_size-1)+1)  # number of pieces horizontal dim.(X)
	x29 = int(x39*((ny-2*edge_y)/win_size-1)+1)  # number of pieces vertical dim.(Y)
	iz = 0	
	pw2 = EMData()
	for iy in xrange(1, x29+1):	
		x21 = (win_size/x39)*(iy-1) + edge_y  #  y-direction it should start from 0 if edge_y=0	      
		for ix in  xrange(1, x26+1):			 
			x22 = (win_size/x38)*(ix-1) + edge_x  # x-direction it should start from 0 if edge_x =0
			wi  = window2d(e_fil, win_size, win_size, "l", x22, x21)
			iz  = iz+1
			if (iz == 1): pw2  = periodogram(ramp(wi))
			else:         pw2 += periodogram(ramp(wi))
	return  pw2/float(iz)
Beispiel #3
0
def tilemic(img, win_size=512, overlp_x=50, overlp_y=50, edge_x=0, edge_y=0):
	""" 
		Calculate the power spectrum using Welch periodograms (overlapped periodogram)
	"""
	from fundamentals import window2d, ramp
	from EMAN2 import periodogram
	nx = img.get_xsize()
	ny = img.get_ysize()
	nx_fft = smallprime(nx)
	ny_fft = smallprime(ny)
	x_gaussian_hi = 1./win_size
	from filter    import filt_gaussh
	e_fil = filt_gaussh(window2d(img,nx_fft,ny_fft,"l"), x_gaussian_hi)
	x38 = 100/(100-overlp_x) # normalization of % of the overlap in x 
	x39 = 100/(100-overlp_y) # normalization of % of the overlap in y
	x26 = int(x38*((nx-2*edge_x)/win_size-1)+1)  # number of pieces horizontal dim.(X)
	x29 = int(x39*((ny-2*edge_y)/win_size-1)+1)  # number of pieces vertical dim.(Y)
	pw2 = []
	for iy in xrange(1, x29+1):	
		x21 = (win_size/x39)*(iy-1) + edge_y  #  y-direction it should start from 0 if edge_y=0	      
		for ix in  xrange(1, x26+1):			 
			x22 = (win_size/x38)*(ix-1) + edge_x  # x-direction it should start from 0 if edge_x =0
			wi  = ramp( window2d(e_fil, win_size, win_size, "l", x22, x21) )
			st = Util.infomask(wi, None, True)
			wi = (wi - st[0])/st[1]*win_size
			pw2.append(periodogram(wi))
	return  pw2
Beispiel #4
0
def welch_pw2_tilt_band(img,
                        theta,
                        num_bnd=-1,
                        overlp_y=50,
                        edge_x=0,
                        edge_y=0,
                        win_s=256):
    """ 
		1. Calculate the power spectra of tilt bands
		2. The tilt micrograph is rotated such that the tilt axis is vertical (along Y axis)
		3. edge_x and edge_y are removed from the micrograph
	"""
    from EMAN2 import periodogram
    nx = img.get_xsize()
    ny = img.get_ysize()
    num1 = int(nx - 2 * edge_x)
    num2 = int(ny - 2 * edge_y)
    nx_fft = smallprime(num1)
    ny_fft = smallprime(num2)
    img1 = window2d(img, nx_fft, ny_fft, "l", edge_x, edge_y)
    if (num_bnd == -1):
        num_bnd = int(nx_fft / win_s)
        win_x = int(win_s)
    else:
        win_x = int(nx_fft / num_bnd)
        win_x = int(smallprime(win_x))
    win_y = win_x
    x_gaussian_hi = 1. / win_x
    del img
    from filter import filt_gaussh
    from utilities import drop_image, rot_image
    # The input img is rotated such that tilt axis is vertical
    img2 = rot_image(img1, theta, 0, 0, 1.0, 1.0)
    e_fil = filt_gaussh(img2, x_gaussian_hi)
    del img1
    del img2
    x39 = 100 / (100 - overlp_y)  # normalization of % of the overlap in y
    x29 = int(x39 * ((ny) / win_y - 1) +
              1)  # number of pieces vertical dim.(Y)
    pw2 = EMData()
    pw2_band = []
    for ix in xrange(1, num_bnd + 1):
        x22 = (win_x) * (ix - 1
                         )  # x-direction it should start from 0 if edge_x =0
        iz = 0
        for iy in xrange(1, x29 + 1):
            x21 = (win_y / x39) * (
                iy - 1)  #  y-direction it should start from 0 if edge_y=0
            wi = window2d(e_fil, win_x, win_y, "l", x22, x21)
            iz = iz + 1
            if (iz == 1): pw2 = periodogram(ramp(wi))
            else: pw2 += periodogram(ramp(wi))
        pw2 /= float(iz)
        # drop_image(pw2,"band%03d"%(ix))
        pw2_band.append(pw2)
    return pw2_band
def welch_pw2_tilt_band(img,theta,num_bnd=-1,overlp_y=50,edge_x=0,edge_y=0,win_s=256):
	""" 
		1. Calculate the power spectra of tilt bands
		2. The tilt micrograph is rotated such that the tilt axis is vertical (along Y axis)
		3. edge_x and edge_y are removed from the micrograph
	""" 
	from EMAN2 import periodogram
	nx = img.get_xsize()
	ny = img.get_ysize()
	num1 = int(nx-2*edge_x)
	num2 = int(ny-2*edge_y)
	nx_fft = smallprime(num1)
	ny_fft = smallprime(num2)
	img1 = window2d(img,nx_fft,ny_fft,"l",edge_x,edge_y)
	if(num_bnd == -1):
		num_bnd = int(nx_fft/win_s)
		win_x   = int(win_s)
	else:
		win_x = int(nx_fft/num_bnd)
		win_x = int(smallprime(win_x))
	win_y = win_x
	x_gaussian_hi = 1./win_x
	del img
	from filter import filt_gaussh
	from utilities import drop_image, rot_image
	# The input img is rotated such that tilt axis is vertical
	img2  = rot_image(img1,theta, 0, 0, 1.0,1.0)	
	e_fil = filt_gaussh(img2, x_gaussian_hi)
	del img1
	del img2
	x39 = 100/(100-overlp_y) # normalization of % of the overlap in y
	x29 = int(x39*((ny)/win_y-1)+1)  # number of pieces vertical dim.(Y)
	pw2 = EMData()
	pw2_band = []
	for ix in  xrange(1, num_bnd+1):
		x22 = (win_x)*(ix-1)# x-direction it should start from 0 if edge_x =0
		iz=0
		for iy in xrange(1, x29+1):	
			x21 = (win_y/x39)*(iy-1) #  y-direction it should start from 0 if edge_y=0	      			 
			wi = window2d(e_fil,win_x, win_y,"l",x22, x21)
			ra = ramp(wi)
			iz = iz+1
			if (iz == 1): pw2  = periodogram(ra)
			else:         pw2 += periodogram(ra)
		pw2/=float(iz)
		# drop_image(pw2,"band%03d"%(ix))
		pw2_band.append(pw2)	
	return 	pw2_band