Beispiel #1
0
def rebalancing_porfolio(symbols=None, bench='^VNINDEX'):

    start0 = "2015-1-2"
    end0 = "2017-1-2"
    allocations, cr, adr, sddr, sr = optimize_portfolio(sd=start0,
                                                        ed=end0,
                                                        syms=symbols,
                                                        benchmark=bench,
                                                        gen_plot=True)
    print("Optimize start Date:", start0)
    print("Optimize end Date:", end0)
    print("Optimize volatility (stdev of daily returns):", sddr)
    print("Optimize average Daily Return:", adr)
    print("Optimize cumulative Return:", cr)
    print(" -----------------------------------------------------")
    start_date_list = ["2017-1-3", "2017-7-3"]
    end_date_list = ["2017-7-2", "2018-4-1"]
    for start, end in zip(start_date_list, end_date_list):

        cr, adr, sddr, sr = compute_portfolio(sd=start,
                                              ed=end,
                                              syms=symbols,
                                              allocs=allocations,
                                              benchmark=bench,
                                              gen_plot=True)
        print("Start Date:", start)
        print("End Date:", end)
        print("Volatility (stdev of daily returns):", sddr)
        print("Average Daily Return:", adr)
        print("Cumulative Return:", cr)
        print(" -----------------------------------------------------")
        allocations, cr, adr, sddr, sr = optimize_portfolio(sd=start,
                                                            ed=end,
                                                            syms=symbols,
                                                            benchmark=bench,
                                                            gen_plot=False)
        print("Optimize volatility (stdev of daily returns):", sddr)
        print("Optimize average Daily Return:", adr)
        print("Optimize cumulative Return:", cr)
        print(" -----------------------------------------------------")

    # Out of sample testing optimisation algorithm

    end_date = "2018-9-27"
    start_date = "2018-4-2"

    cr, adr, sddr, sr = compute_portfolio(sd=start_date,
                                          ed=end_date,
                                          syms=symbols,
                                          allocs=allocations,
                                          benchmark=bench,
                                          gen_plot=True)
    print(
        "....................... Out of sample performance .................")
    print("Start Date:", start_date)
    print("End Date:", end_date)
    print("Volatility (stdev of daily returns):", sddr)
    print("Average Daily Return:", adr)
    print("Cumulative Return:", cr)
    # Assess the portfolio
    investment = 60E6
    df_result = pd.DataFrame(index=symbols)
    df_result['Opt allocs'] = allocations
    df_result['Cash'] = allocations * investment

    dates = pd.date_range(start_date, end_date)  # date range as index
    df_data = get_data(symbols, dates,
                       benchmark=bench)  # get data for each symbol

    df_high = get_data(symbols, dates, benchmark=bench, colname='<High>')
    df_low = get_data(symbols, dates, benchmark=bench, colname='<Low>')

    max_high = pd.Series(df_high.max(), name='MaxHigh')
    min_low = pd.Series(df_low.min(), name='MinLow')
    cpm = pd.Series(max_high / min_low, name='CPM')
    volatility = df_data[symbols].pct_change().std()

    # Fill missing values

    df_result['Close'] = df_data[symbols].iloc[-1, :].values
    df_result['CPM'] = cpm[symbols]
    df_result['Shares'] = round(
        df_result['Cash'] / df_result['Close'].values / 1000, 0)
    df_result['Volatility'] = volatility

    alpha_beta = analysis_alpha_beta(df_data, symbols, market=bench)
    df_result['Alpha'] = alpha_beta['Alpha']
    df_result['Beta'] = alpha_beta['Beta']

    relative_strength = 40*df_data[symbols].pct_change(periods = 63).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 126).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 189).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 252).fillna(0)

    df_result['RSW'] = relative_strength.iloc[-1, :].values

    return df_result
Beispiel #2
0
def passive_strategy(start_date, end_date, market="SPY"):

    symbols = getliststocks(typestock=market)

    dates = pd.date_range(start_date, end_date)  # date range as index
    df_data = get_data_us(symbols, dates,
                          benchmark=market)  # get data for each symbol

    df_volume = get_data_us(symbols, dates, benchmark=market,
                            colname='Volume')  # get data for each symbol
    df_high = get_data_us(symbols, dates, benchmark=market, colname='High')
    df_low = get_data_us(symbols, dates, benchmark=market, colname='Low')

    df_value = (df_volume * df_data).fillna(0)
    valueM30 = df_value.rolling(window=30).mean()

    vol_mean = pd.Series(df_volume.mean(), name='Volume')
    max_high = pd.Series(df_high.max(), name='MaxHigh')
    min_low = pd.Series(df_low.min(), name='MinLow')
    cpm = pd.Series(max_high / min_low, name='CPM')
    value_mean = pd.Series(df_value.mean(), name='Value')

    # Fill missing values
    fill_missing_values(df_data)

    # Assess the portfolio

    allocations, cr, adr, sddr, sr = optimize_portfolio(sd=start_date,
                                                        ed=end_date,
                                                        syms=symbols,
                                                        benchmark=market,
                                                        country='US',
                                                        gen_plot=True)

    # Print statistics
    print("Start Date:", start_date)
    print("End Date:", end_date)
    print("Symbols:", symbols)
    print("Optimal allocations:", allocations)
    print("Sharpe Ratio:", sr)
    print("Volatility (stdev of daily returns):", sddr)
    print("Average Daily Return:", adr)
    print("Cumulative Return:", cr)

    investment = 50000000
    df_result = pd.DataFrame(index=symbols)
    df_result['Opt allocs'] = allocations
    df_result['Cash'] = allocations * investment
    df_result['Close'] = df_data[symbols].iloc[-1, :].values
    df_result['Volume'] = df_volume[symbols].iloc[-1, :].values
    df_result['VolumeMean'] = vol_mean[symbols]
    df_result['Value'] = df_result['Close'] * df_result['Volume']
    df_result['ValueMean'] = value_mean[symbols]
    df_result['ValueMA30'] = valueM30[symbols].iloc[-1, :].values
    #    df_result['MaxH'] = max_high
    #    df_result['MinL'] = min_low
    df_result['CPM'] = cpm[symbols]
    df_result['Shares'] = round(
        df_result['Cash'] / df_result['Close'].values / 1000, 0)
    df_result['Volatility'] = df_data[symbols].pct_change().std()

    alpha_beta = analysis_alpha_beta(df_data, symbols, market)
    df_result['Alpha'] = alpha_beta['Alpha']
    df_result['Beta'] = alpha_beta['Beta']

    relative_strength = 40*df_data[symbols].pct_change(periods = 63).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 126).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 189).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 252).fillna(0)

    df_result['RSW'] = relative_strength.iloc[-1, :].values

    return df_result, df_data
Beispiel #3
0
def passive_strategy(start_date, end_date, market="^VNINDEX", symbols=None):

    if symbols == None:
        symbols = getliststocks(typestock=market)

    dates = pd.date_range(start_date, end_date)  # date range as index
    df_data = get_data(symbols, dates,
                       benchmark=market)  # get data for each symbol

    df_volume = get_data(symbols, dates, benchmark=market,
                         colname='<Volume>')  # get data for each symbol
    df_high = get_data(symbols, dates, benchmark=market, colname='<High>')
    df_low = get_data(symbols, dates, benchmark=market, colname='<Low>')

    #    covariance = numpy.cov(asset , SPY)[0][1]
    #    variance = numpy.var(asset)
    #
    #    beta = covariance / variance
    df_volume = df_volume.fillna(0)
    df_value = (df_volume * df_data).fillna(0)
    valueM30 = df_value.rolling(window=30).mean()

    vol_mean = pd.Series(df_volume.mean(), name='Volume')
    max_high = pd.Series(df_high.max(), name='MaxHigh')
    min_low = pd.Series(df_low.min(), name='MinLow')
    cpm = pd.Series(max_high / min_low, name='CPM')
    value_mean = pd.Series(df_value.mean(), name='ValueMean')

    # Fill missing values
    fill_missing_values(df_data)

    # Assess the portfolio

    allocations, cr, adr, sddr, sr = optimize_portfolio(sd=start_date,
                                                        ed=end_date,
                                                        syms=symbols,
                                                        benchmark=market,
                                                        gen_plot=True)

    # Print statistics
    print("Start Date:", start_date)
    print("End Date:", end_date)
    print("Symbols:", symbols)
    print("Optimal allocations:", allocations)
    print("Sharpe Ratio:", sr)
    print("Volatility (stdev of daily returns):", sddr)
    print("Average Daily Return:", adr)
    print("Cumulative Return:", cr)

    investment = 50000000
    df_result = pd.DataFrame(index=symbols)
    df_result['Opt allocs'] = allocations
    df_result['Cash'] = allocations * investment
    df_result['Close'] = df_data[symbols].iloc[-1, :].values
    df_result['PCT_Change'] = 100 * (df_data[symbols].iloc[-1, :].values -
                                     df_data[symbols].iloc[0, :].values
                                     ) / df_data[symbols].iloc[0, :].values
    df_result['Volume'] = df_volume[symbols].iloc[-1, :].values
    df_result['VolumeMean'] = vol_mean[symbols]
    df_result['Value'] = df_result['Close'] * df_result['Volume']
    df_result['ValueMean'] = value_mean[symbols]
    df_result['ValueMA30'] = valueM30[symbols].iloc[-1, :].values
    #    df_result['MaxH'] = max_high
    #    df_result['MinL'] = min_low
    df_result['CPM'] = cpm[symbols]
    df_result['Shares'] = round(
        df_result['Cash'] / df_result['Close'].values / 1000, 0)

    df_result['Volatility'] = df_data[symbols].pct_change().std()

    df_result['PCT_Change0D'] = df_data[symbols].pct_change().iloc[
        -1, :].values * 100
    df_result['PCT_Change1D'] = df_data[symbols].pct_change().iloc[
        -2, :].values * 100
    df_result['PCT_Change2D'] = df_data[symbols].pct_change().iloc[
        -3, :].values * 100

    alpha_beta = analysis_alpha_beta(df_data, symbols, market)
    df_result['Alpha'] = alpha_beta['Alpha']
    df_result['Beta'] = alpha_beta['Beta']

    relative_strength = 40*df_data[symbols].pct_change(periods = 63).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 126).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 189).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 252).fillna(0)

    relative_strength1M = 100 * df_data[symbols].pct_change(
        periods=21).fillna(0)
    relative_strength2M = 100 * df_data[symbols].pct_change(
        periods=42).fillna(0)

    df_result['RSW'] = relative_strength.iloc[-1, :].values

    df_result['RSW1M'] = relative_strength1M.iloc[-1, :].values
    df_result['RSW2M'] = relative_strength2M.iloc[-1, :].values

    marketVNI = df_data[symbols].pct_change()
    advances = marketVNI[marketVNI > 0]
    declines = marketVNI[marketVNI <= 0]
    dec = advances.isnull().sum(axis=1)
    adv = declines.isnull().sum(axis=1)

    df_market = pd.DataFrame(index=marketVNI.index)
    df_market[market + 'Volume'] = df_volume[market]
    df_market[market + 'PCT_Volume'] = df_volume[market].pct_change() * 100
    df_market[market + 'PCT_Index'] = df_data[market].pct_change() * 100
    #    df_market['Adv'] = adv
    #    df_market['Dec'] = dec
    df_market[market + 'Adv_Dec'] = adv - dec
    df_market[market + 'Dec/Adv'] = dec / adv
    strength = pd.Series(index=marketVNI.index)
    strength[(df_market[market + 'Adv_Dec'] > 0)
             & (df_market[market + 'PCT_Index'] > 0)] = 1
    strength[(df_market[market + 'Adv_Dec'] < 0)
             & (df_market[market + 'PCT_Index'] < 0)] = -1
    strength[(df_market[market + 'Adv_Dec'] < 0)
             & (df_market[market + 'PCT_Index'] > 0)] = 0
    df_market[market + 'Strength'] = strength
    #    np.where((df_data[symbols].pct_change() > 0), 1, -1)

    return df_result, df_data, df_market