Beispiel #1
0
def test_BlackKarasinskiExampleTwo():
    # Valuation of a European option on a coupon bearing bond
    # This follows example in Fig 28.11 of John Hull's book but does not
    # have the exact same dt so there are some differences

    settlementDate = FinDate(1, 12, 2019)
    expiryDate = settlementDate.addTenor("18m")
    maturityDate = settlementDate.addTenor("10Y")
    coupon = 0.05
    frequencyType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(maturityDate, coupon, frequencyType, accrualType)

    bond.calculateFlowDates(settlementDate)
    couponTimes = []
    couponFlows = []
    cpn = bond._coupon / bond._frequency
    for flowDate in bond._flowDates:
        flowTime = (flowDate - settlementDate) / gDaysInYear
        couponTimes.append(flowTime)
        couponFlows.append(cpn)

    couponTimes = np.array(couponTimes)
    couponFlows = np.array(couponFlows)

    strikePrice = 105.0
    face = 100.0

    tmat = (maturityDate - settlementDate) / gDaysInYear
    texp = (expiryDate - settlementDate) / gDaysInYear
    times = np.linspace(0, tmat, 20)
    dfs = np.exp(-0.05 * times)
    curve = FinDiscountCurve(settlementDate, times, dfs)

    price = bond.fullPriceFromDiscountCurve(settlementDate, curve)
    print("Fixed Income Price:", price)

    sigma = 0.20
    a = 0.05

    # Test convergence
    numStepsList = [100]  #,101,200,300,400,500,600,700,800,900,1000]
    isAmerican = True

    treeVector = []
    for numTimeSteps in numStepsList:
        start = time.time()
        model = FinModelRatesBlackKarasinski(a, sigma)
        model.buildTree(tmat, int(numTimeSteps), times, dfs)
        v = model.bondOption(texp, strikePrice, face, couponTimes, couponFlows,
                             isAmerican)
        end = time.time()
        period = end - start
        treeVector.append(v[0])
        print(numTimeSteps, v, period)
def test_FinBondOption():

    settlementDate = FinDate(1, 12, 2019)

    maturityDate = settlementDate.addTenor("10Y")
    coupon = 0.05
    frequencyType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(maturityDate, coupon, frequencyType, accrualType)

    tmat = (maturityDate - settlementDate) / gDaysInYear
    times = np.linspace(0, tmat, 20)
    dfs = np.exp(-0.05 * times)
    discountCurve = FinDiscountCurve(settlementDate, times, dfs)

    expiryDate = settlementDate.addTenor("18m")
    strikePrice = 105.0
    face = 100.0
    optionType = FinBondOptionTypes.AMERICAN_CALL

    price = bond.fullPriceFromDiscountCurve(settlementDate, discountCurve)
    print("Fixed Income Price:", price)

    for strikePrice in [90, 95, 100, 105, 110]:

        sigma = 0.01
        a = 0.1

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesHullWhite(a, sigma)
        v = bondOption.value(settlementDate, discountCurve, model)
        print("HW", strikePrice, v)

    for strikePrice in [90, 95, 100, 105, 110]:

        sigma = 0.20
        a = 0.05

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesBlackKarasinski(a, sigma)
        v = bondOption.value(settlementDate, discountCurve, model)
        print("BK", strikePrice, v)
Beispiel #3
0
def test_FinBondOption():

    settlementDate = FinDate(1, 12, 2019)
    issueDate = FinDate(1, 12, 2018)
    maturityDate = settlementDate.addTenor("10Y")
    coupon = 0.05
    freqType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, freqType, accrualType)

    tmat = (maturityDate - settlementDate) / gDaysInYear
    times = np.linspace(0, tmat, 20)
    dates = settlementDate.addYears(times)
    dfs = np.exp(-0.05 * times)
    discountCurve = FinDiscountCurve(settlementDate, dates, dfs)

    expiryDate = settlementDate.addTenor("18m")
    strikePrice = 105.0
    face = 100.0

    ###########################################################################

    strikes = [80, 90, 100, 110, 120]

    optionType = FinOptionTypes.EUROPEAN_CALL

    testCases.header("LABEL", "VALUE")

    price = bond.fullPriceFromDiscountCurve(settlementDate, discountCurve)
    testCases.print("Fixed Income Price:", price)

    numTimeSteps = 100

    testCases.header("OPTION TYPE AND MODEL", "STRIKE", "VALUE")

    for strikePrice in strikes:

        sigma = 0.20

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesBDT(sigma, numTimeSteps)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print("EUROPEAN CALL - BK", strikePrice, v)

    for strikePrice in strikes:

        sigma = 0.20

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesBDT(sigma, numTimeSteps)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print("EUROPEAN CALL - BK", strikePrice, v)

    ###########################################################################

    optionType = FinOptionTypes.AMERICAN_CALL

    price = bond.fullPriceFromDiscountCurve(settlementDate, discountCurve)
    testCases.header("LABEL", "VALUE")
    testCases.print("Fixed Income Price:", price)

    testCases.header("OPTION TYPE AND MODEL", "STRIKE", "VALUE")

    for strikePrice in strikes:

        sigma = 0.20

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesBDT(sigma, numTimeSteps)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print("AMERICAN CALL - BK", strikePrice, v)

    for strikePrice in strikes:

        sigma = 0.20

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesBDT(sigma, numTimeSteps)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print("AMERICAN CALL - BK", strikePrice, v)

    ###########################################################################

    optionType = FinOptionTypes.EUROPEAN_PUT

    price = bond.fullPriceFromDiscountCurve(settlementDate, discountCurve)

    for strikePrice in strikes:

        sigma = 0.01

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesBDT(sigma, numTimeSteps)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print("EUROPEAN PUT - BK", strikePrice, v)

    for strikePrice in strikes:

        sigma = 0.20

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesBDT(sigma, numTimeSteps)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print("EUROPEAN PUT - BK", strikePrice, v)

    ###########################################################################

    optionType = FinOptionTypes.AMERICAN_PUT

    price = bond.fullPriceFromDiscountCurve(settlementDate, discountCurve)

    for strikePrice in strikes:

        sigma = 0.02

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesBDT(sigma, numTimeSteps)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print("AMERICAN PUT - BK", strikePrice, v)

    for strikePrice in strikes:

        sigma = 0.20

        bondOption = FinBondOption(bond, expiryDate, strikePrice, face,
                                   optionType)
        model = FinModelRatesBDT(sigma, numTimeSteps)
        v = bondOption.value(settlementDate, discountCurve, model)
        testCases.print("AMERICAN PUT - BK", strikePrice, v)
Beispiel #4
0
def test_FinBondOptionAmericanConvergenceTWO():

    # Build discount curve
    settlementDate = FinDate(1, 12, 2019)
    discountCurve = FinDiscountCurveFlat(settlementDate, 0.05,
                                         FinFrequencyTypes.CONTINUOUS)

    # Bond details
    issueDate = FinDate(1, 9, 2014)
    maturityDate = FinDate(1, 9, 2025)
    coupon = 0.05
    freqType = FinFrequencyTypes.ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, freqType, accrualType)
    expiryDate = settlementDate.addTenor("18m")
    face = 100.0

    spotValue = bond.fullPriceFromDiscountCurve(settlementDate, discountCurve)
    testCases.header("LABEL", "VALUE")
    testCases.print("BOND PRICE", spotValue)

    testCases.header("TIME", "N", "EUR_CALL", "AMER_CALL", "EUR_PUT",
                     "AMER_PUT")

    sigma = 0.2
    model = FinModelRatesBDT(sigma)
    K = 101.0

    vec_ec = []
    vec_ac = []
    vec_ep = []
    vec_ap = []

    if 1 == 1:
        K = 100.0
        bkModel = FinModelRatesBDT(sigma, 100)
        europeanCallBondOption = FinBondOption(bond, expiryDate, K, face,
                                               FinOptionTypes.EUROPEAN_CALL)

        v_ec = europeanCallBondOption.value(settlementDate, discountCurve,
                                            model)
        testCases.header("LABEL", "VALUE")
        testCases.print("OPTION", v_ec)

    numStepsVector = range(100, 100, 1)  # should be 100-400

    for numSteps in numStepsVector:

        bkModel = FinModelRatesBDT(sigma, numSteps)

        start = time.time()

        europeanCallBondOption = FinBondOption(bond, expiryDate, K, face,
                                               FinOptionTypes.EUROPEAN_CALL)
        v_ec = europeanCallBondOption.value(settlementDate, discountCurve,
                                            bkModel)

        americanCallBondOption = FinBondOption(bond, expiryDate, K, face,
                                               FinOptionTypes.AMERICAN_CALL)
        v_ac = americanCallBondOption.value(settlementDate, discountCurve,
                                            bkModel)

        europeanPutBondOption = FinBondOption(bond, expiryDate, K, face,
                                              FinOptionTypes.EUROPEAN_PUT)
        v_ep = europeanPutBondOption.value(settlementDate, discountCurve,
                                           bkModel)

        americanPutBondOption = FinBondOption(bond, expiryDate, K, face,
                                              FinOptionTypes.AMERICAN_PUT)
        v_ap = americanPutBondOption.value(settlementDate, discountCurve,
                                           bkModel)

        end = time.time()
        period = end - start

        testCases.print(period, numSteps, v_ec, v_ac, v_ep, v_ap)

        vec_ec.append(v_ec)
        vec_ac.append(v_ac)
        vec_ep.append(v_ep)
        vec_ap.append(v_ap)

    if plotGraphs:

        plt.figure()
        plt.plot(numStepsVector, vec_ec, label="European Call")
        plt.legend()

        plt.figure()
        plt.plot(numStepsVector, vec_ac, label="American Call")
        plt.legend()

        plt.figure()
        plt.plot(numStepsVector, vec_ep, label="European Put")
        plt.legend()

        plt.figure()
        plt.plot(numStepsVector, vec_ap, label="American Put")
        plt.legend()
def test_FinBondOptionZEROVOLConvergence():

    # Build discount curve
    settlementDate = FinDate(1, 9, 2019)
    rate = 0.05
    discountCurve = FinDiscountCurveFlat(settlementDate, rate,
                                         FinFrequencyTypes.ANNUAL)

    # Bond details
    issueDate = FinDate(1, 9, 2014)
    maturityDate = FinDate(1, 9, 2025)
    coupon = 0.06
    freqType = FinFrequencyTypes.ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(issueDate, maturityDate, coupon, freqType, accrualType)

    # Option Details
    expiryDate = FinDate(1, 12, 2021)
    face = 100.0

    dfExpiry = discountCurve.df(expiryDate)
    fwdCleanValue = bond.cleanPriceFromDiscountCurve(expiryDate, discountCurve)
    fwdFullValue = bond.fullPriceFromDiscountCurve(expiryDate, discountCurve)
    #    print("BOND FwdCleanBondPx", fwdCleanValue)
    #    print("BOND FwdFullBondPx", fwdFullValue)
    #    print("BOND Accrued:", bond._accruedInterest)

    spotCleanValue = bond.cleanPriceFromDiscountCurve(settlementDate,
                                                      discountCurve)

    testCases.header("STRIKE", "STEPS", "CALL_INT", "CALL_INT_PV", "CALL_EUR",
                     "CALL_AMER", "PUT_INT", "PUT_INT_PV", "PUT_EUR",
                     "PUT_AMER")

    numTimeSteps = range(100, 1000, 100)
    strikePrices = [90, 100, 110, 120]

    for strikePrice in strikePrices:

        callIntrinsic = max(spotCleanValue - strikePrice, 0)
        putIntrinsic = max(strikePrice - spotCleanValue, 0)
        callIntrinsicPV = max(fwdCleanValue - strikePrice, 0) * dfExpiry
        putIntrinsicPV = max(strikePrice - fwdCleanValue, 0) * dfExpiry

        for numSteps in numTimeSteps:

            sigma = 0.0000001
            a = 0.1
            model = FinModelRatesHW(sigma, a, numSteps)

            optionType = FinOptionTypes.EUROPEAN_CALL
            bondOption1 = FinBondOption(bond, expiryDate, strikePrice, face,
                                        optionType)
            v1 = bondOption1.value(settlementDate, discountCurve, model)

            optionType = FinOptionTypes.AMERICAN_CALL
            bondOption2 = FinBondOption(bond, expiryDate, strikePrice, face,
                                        optionType)
            v2 = bondOption2.value(settlementDate, discountCurve, model)

            optionType = FinOptionTypes.EUROPEAN_PUT
            bondOption3 = FinBondOption(bond, expiryDate, strikePrice, face,
                                        optionType)
            v3 = bondOption3.value(settlementDate, discountCurve, model)

            optionType = FinOptionTypes.AMERICAN_PUT
            bondOption4 = FinBondOption(bond, expiryDate, strikePrice, face,
                                        optionType)
            v4 = bondOption4.value(settlementDate, discountCurve, model)

            testCases.print(strikePrice, numSteps, callIntrinsic,
                            callIntrinsicPV, v1, v2, putIntrinsic,
                            putIntrinsicPV, v3, v4)
Beispiel #6
0
def test_HullWhiteBondOption():
    # Valuation of a European option on a coupon bearing bond

    settlementDate = FinDate(1, 12, 2019)
    expiryDate = settlementDate.addTenor("18m")
    maturityDate = settlementDate.addTenor("10Y")
    coupon = 0.05
    frequencyType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(maturityDate, coupon, frequencyType, accrualType)

    bond.calculateFlowDates(settlementDate)
    couponTimes = []
    couponFlows = []
    cpn = bond._coupon / bond._frequency
    for flowDate in bond._flowDates[1:]:
        flowTime = (flowDate - settlementDate) / gDaysInYear
        couponTimes.append(flowTime)
        couponFlows.append(cpn)
    couponTimes = np.array(couponTimes)
    couponFlows = np.array(couponFlows)

    strikePrice = 105.0
    face = 100.0

    tmat = (maturityDate - settlementDate) / gDaysInYear
    times = np.linspace(0, tmat, 20)
    dfs = np.exp(-0.05 * times)
    curve = FinDiscountCurve(settlementDate, times, dfs)

    price = bond.fullPriceFromDiscountCurve(settlementDate, curve)
    print("Spot Bond Price:", price)

    price = bond.fullPriceFromDiscountCurve(expiryDate, curve)
    print("Fwd Bond Price:", price)

    sigma = 0.01
    a = 0.1

    # Test convergence
    numStepsList = [100, 200, 300, 400, 500]
    texp = (expiryDate - settlementDate) / gDaysInYear

    print("NUMSTEPS", "FAST TREE", "FULLTREE", "TIME")

    for numTimeSteps in numStepsList:
        start = time.time()
        model = FinModelRatesHullWhite(a, sigma)
        model.buildTree(texp, numTimeSteps, times, dfs)

        americanExercise = False
        v1 = model.americanBondOption_Tree(texp, strikePrice, face,
                                           couponTimes, couponFlows,
                                           americanExercise)

        v2 = model.europeanBondOption_Tree(texp, strikePrice, face,
                                           couponTimes, couponFlows)

        end = time.time()
        period = end - start

        print(numTimeSteps, v1, v2, period)

#    plt.plot(numStepsList, treeVector)

    if 1 == 0:
        print("RT")
        printTree(model._rt, 5)
        print("BOND")
        printTree(model._bondValues, 5)
        print("OPTION")
        printTree(model._optionValues, 5)

    v = model.europeanBondOption_Jamshidian(texp, strikePrice, face,
                                            couponTimes, couponFlows, times,
                                            dfs)

    print("EUROPEAN BOND JAMSHIDIAN DECOMP", v)
Beispiel #7
0
def test_HullWhiteCallableBond():
    # Valuation of a European option on a coupon bearing bond

    settlementDate = FinDate(1, 12, 2019)
    maturityDate = settlementDate.addTenor("10Y")
    coupon = 0.05
    frequencyType = FinFrequencyTypes.SEMI_ANNUAL
    accrualType = FinDayCountTypes.ACT_ACT_ICMA
    bond = FinBond(maturityDate, coupon, frequencyType, accrualType)

    bond.calculateFlowDates(settlementDate)
    couponTimes = []
    couponFlows = []
    cpn = bond._coupon / bond._frequency
    for flowDate in bond._flowDates[1:]:
        flowTime = (flowDate - settlementDate) / gDaysInYear
        couponTimes.append(flowTime)
        couponFlows.append(cpn)
    couponTimes = np.array(couponTimes)
    couponFlows = np.array(couponFlows)

    ###########################################################################
    # Set up the call and put times and prices
    ###########################################################################

    callDates = []
    callPrices = []
    callPx = 120.0
    callDates.append(settlementDate.addTenor("5Y"))
    callPrices.append(callPx)
    callDates.append(settlementDate.addTenor("6Y"))
    callPrices.append(callPx)
    callDates.append(settlementDate.addTenor("7Y"))
    callPrices.append(callPx)
    callDates.append(settlementDate.addTenor("8Y"))
    callPrices.append(callPx)

    callTimes = []
    for dt in callDates:
        t = (dt - settlementDate) / gDaysInYear
        callTimes.append(t)

    putDates = []
    putPrices = []
    putPx = 98.0
    putDates.append(settlementDate.addTenor("5Y"))
    putPrices.append(putPx)
    putDates.append(settlementDate.addTenor("6Y"))
    putPrices.append(putPx)
    putDates.append(settlementDate.addTenor("7Y"))
    putPrices.append(putPx)
    putDates.append(settlementDate.addTenor("8Y"))
    putPrices.append(putPx)

    putTimes = []
    for dt in putDates:
        t = (dt - settlementDate) / gDaysInYear
        putTimes.append(t)

    ###########################################################################

    tmat = (maturityDate - settlementDate) / gDaysInYear
    times = np.linspace(0, tmat, 20)
    dfs = np.exp(-0.05 * times)
    curve = FinDiscountCurve(settlementDate, times, dfs)

    ###########################################################################

    v1 = bond.fullPriceFromDiscountCurve(settlementDate, curve)

    sigma = 0.02  # basis point volatility
    a = 0.1

    # Test convergence
    numStepsList = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
    tmat = (maturityDate - settlementDate) / gDaysInYear

    print("NUMSTEPS", "BOND_ONLY", "CALLABLE_BOND", "TIME")

    for numTimeSteps in numStepsList:
        start = time.time()
        model = FinModelRatesHullWhite(a, sigma)
        model.buildTree(tmat, numTimeSteps, times, dfs)

        v2 = model.callablePuttableBond_Tree(couponTimes, couponFlows,
                                             callTimes, callPrices, putTimes,
                                             putPrices)

        end = time.time()
        period = end - start
        print(numTimeSteps, v1, v2, period)

    if 1 == 0:
        print("RT")
        printTree(model._rt, 5)
        print("BOND")
        printTree(model._bondValues, 5)
        print("OPTION")
        printTree(model._optionValues, 5)