Beispiel #1
0
        s_len = X_0.shape[0]
        results.loc[idx].X_adv_err = torch.zeros(len(noise_rel), s_len)
        results.loc[idx].X_ref_err = torch.zeros(len(noise_rel), s_len)

        for s in range(s_len):
            print("Sample: {}/{}".format(s + 1, s_len))
            X_0_s = X_0[s:s + 1, ...].repeat(it_init,
                                             *((X_0.ndim - 1) * (1, )))
            Y_0_s = Y_0[s:s + 1, ...].repeat(it_init,
                                             *((Y_0.ndim - 1) * (1, )))

            X_adv_err_cur, X_ref_err_cur = grid_attack(
                method,
                noise_rel,
                X_0_s,
                Y_0_s,
                store_data=False,
                keep_init=keep_init,
                err_measure=err_measure,
            )

            results.loc[idx].X_adv_err[:, s] = X_adv_err_cur.max(dim=1)[0]
            results.loc[idx].X_ref_err[:, s] = X_ref_err_cur.mean(dim=1)

# save results
for idx in results.index:
    results_save.loc[idx] = results.loc[idx]
os.makedirs(save_path, exist_ok=True)
results_save.to_pickle(save_results)

# ----- plotting -----
                                             *((X_0.ndim - 1) * (1, )))
            Y_0_s = Y_0[s:s + 1, ...].repeat(it_init,
                                             *((Y_0.ndim - 1) * (1, )))

            (
                X_adv_err_cur,
                X_ref_err_cur,
                X_adv_cur,
                X_ref_cur,
                _,
                _,
            ) = grid_attack(
                method,
                noise_rel,
                X_0_s,
                Y_0_s,
                store_data=True,
                keep_init=keep_init,
                err_measure=err_measure,
            )

            (
                results.loc[idx].X_adv_err[:, s],
                idx_max_adv_err,
            ) = X_adv_err_cur.max(dim=1)
            results.loc[idx].X_ref_err[:, s] = X_ref_err_cur.mean(dim=1)

            for idx_noise in range(len(noise_rel)):
                idx_max = idx_max_adv_err[idx_noise]
                results.loc[idx].X_adv_psnr[idx_noise, s] = psnr(
                    rotate_real(X_adv_cur[idx_noise, ...])[idx_max, 0:1, ...],