Beispiel #1
0
def step_resnet50_streamline_linear(model: ModelWrapper,
                                    cfg: DataflowBuildConfig):
    streamline_transformations = [
        AbsorbScalarMulAddIntoTopK(
        ),  # before MoveAddPastMul to avoid int->float 
        ConvertSubToAdd(),
        ConvertDivToMul(),
        RemoveIdentityOps(),
        CollapseRepeatedMul(),
        BatchNormToAffine(),
        ConvertSignToThres(),
        MoveAddPastMul(),
        MoveScalarAddPastMatMul(),
        MoveAddPastConv(),
        MoveScalarMulPastMatMul(),
        MoveScalarMulPastConv(),
        MoveScalarLinearPastInvariants(),
        MoveAddPastMul(),
        CollapseRepeatedAdd(),
        CollapseRepeatedMul(),
        AbsorbAddIntoMultiThreshold(),
        FactorOutMulSignMagnitude(),
        MoveMaxPoolPastMultiThreshold(),
        AbsorbMulIntoMultiThreshold(),
        Absorb1BitMulIntoMatMul(),
        Absorb1BitMulIntoConv(),
        RoundAndClipThresholds(),
    ]
    for trn in streamline_transformations:
        model = model.transform(trn)
        model = model.transform(GiveUniqueNodeNames())
    return model
Beispiel #2
0
 def apply(self, model):
     streamline_transformations = [
         ConvertSubToAdd(),
         ConvertDivToMul(),
         BatchNormToAffine(),
         ConvertSignToThres(),
         MoveMulPastMaxPool(),
         MoveScalarLinearPastInvariants(),
         AbsorbSignBiasIntoMultiThreshold(),
         MoveAddPastMul(),
         MoveScalarAddPastMatMul(),
         MoveAddPastConv(),
         MoveScalarMulPastMatMul(),
         MoveScalarMulPastConv(),
         MoveAddPastMul(),
         CollapseRepeatedAdd(),
         CollapseRepeatedMul(),
         MoveMulPastMaxPool(),
         AbsorbAddIntoMultiThreshold(),
         FactorOutMulSignMagnitude(),
         AbsorbMulIntoMultiThreshold(),
         Absorb1BitMulIntoMatMul(),
         Absorb1BitMulIntoConv(),
         RoundAndClipThresholds(),
     ]
     for trn in streamline_transformations:
         model = model.transform(trn)
         model = model.transform(RemoveIdentityOps())
         model = model.transform(GiveUniqueNodeNames())
         model = model.transform(GiveReadableTensorNames())
         model = model.transform(InferDataTypes())
     return (model, False)
Beispiel #3
0
def step_streamline(model: ModelWrapper, cfg: DataflowBuildConfig):
    """Run streamlining on given model. Streamlining involves moving floating point
    scale/shift parameters around, collapsing adjacent ones into a single parameter,
    then absorbing the scale/shift into the following `MultiThreshold` node.
    Streamlining requires careful topology design and cannot be applied to all
    topologies.
    """

    model = model.transform(MoveScalarLinearPastInvariants())
    model = model.transform(Streamline())
    need_lowering = len(model.get_nodes_by_op_type("Conv")) > 0
    if need_lowering:
        model = model.transform(LowerConvsToMatMul())
        model = model.transform(MakeMaxPoolNHWC())
        model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
    model = model.transform(ConvertBipolarMatMulToXnorPopcount())
    model = model.transform(Streamline())
    # absorb final add-mul nodes into TopK
    model = model.transform(absorb.AbsorbScalarMulAddIntoTopK())
    model = model.transform(InferDataLayouts())
    model = model.transform(RemoveUnusedTensors())

    if VerificationStepType.STREAMLINED_PYTHON in cfg._resolve_verification_steps(
    ):
        verify_step(model, cfg, "streamlined_python", need_parent=False)

    return model
Beispiel #4
0
def streamline(model, binary=True):
    log("Streamline transformations launched")
    model = model.transform(MoveScalarLinearPastInvariants())
    model = model.transform(Streamline())
    # Absorb add and mul in thresholds
    model = model.transform(absorb.AbsorbAddIntoMultiThreshold())
    model = model.transform(absorb.AbsorbMulIntoMultiThreshold())
    # Absorb add-mul in top-k
    model = model.transform(absorb.AbsorbScalarMulAddIntoTopK())
    model = model.transform(RoundAndClipThresholds())
    # Tidy-up
    model = model.transform(InferDataLayouts())
    model = model.transform(RemoveUnusedTensors())
    log("Streamline transformations completed")
    save(model, "3_streamlined")
    return model
Beispiel #5
0
 def test_streamline(self, topology, wbits, abits):
     prev_chkpt_name = get_checkpoint_name(topology, wbits, abits, "pre_post")
     model = load_test_checkpoint_or_skip(prev_chkpt_name)
     # move past any reshapes to be able to streamline input scaling
     model = model.transform(MoveScalarLinearPastInvariants())
     model = model.transform(Streamline())
     if "fc" not in topology:
         model = model.transform(LowerConvsToMatMul())
         model = model.transform(MakeMaxPoolNHWC())
         model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
     model = model.transform(ConvertBipolarMatMulToXnorPopcount())
     model = model.transform(Streamline())
     # absorb final add-mul nodes into TopK
     model = model.transform(absorb.AbsorbScalarMulAddIntoTopK())
     model = model.transform(InferDataLayouts())
     model = model.transform(RemoveUnusedTensors())
     model.save(get_checkpoint_name(topology, wbits, abits, "streamline"))
def test_convert_to_hls_conv_fc_transition(conv_config, depthwise,
                                           use_reshape):
    np.random.seed(0)
    idt = DataType["UINT4"]
    odt = DataType["UINT4"]
    conv_weight_dt = DataType["INT4"]
    fc_weight_dt = DataType["INT4"]

    input_shape, kernel_shape, stride, pad = conv_config
    kernel_size_h, kernel_size_w = kernel_shape
    input_size_h, input_size_w = input_shape
    stride_h, stride_w = stride
    pad_h, pad_w = pad

    in_chn = 4
    fc_filters = 16

    if depthwise is True:
        group = out_chn = in_chn
        conv_param_shape = [out_chn, 1, kernel_size_h, kernel_size_w]
    else:
        group = 1
        out_chn = 8
        conv_param_shape = [out_chn, in_chn, kernel_size_h, kernel_size_w]

    output_size_h = compute_conv_output_dim(input_size_h, kernel_size_h,
                                            stride_h, 2 * pad_h)
    output_size_w = compute_conv_output_dim(input_size_w, kernel_size_w,
                                            stride_w, 2 * pad_w)

    input_shape = [1, in_chn, input_size_h, input_size_w]
    fc_param_shape = [out_chn * output_size_h * output_size_w, fc_filters]
    output_shape = [1, fc_filters]

    conv_config = {}
    conv_config["dilations"] = [1, 1]
    conv_config["group"] = group
    conv_config["kernel_shape"] = [kernel_size_h, kernel_size_w]
    conv_config["pads"] = [pad_h, pad_w, pad_h, pad_w]
    conv_config["strides"] = [stride_h, stride_w]

    global_in = helper.make_tensor_value_info("global_in", TensorProto.FLOAT,
                                              input_shape)
    global_out = helper.make_tensor_value_info("global_out", TensorProto.FLOAT,
                                               output_shape)
    value_info = [
        helper.make_tensor_value_info("conv_param", TensorProto.FLOAT,
                                      conv_param_shape),
        helper.make_tensor_value_info("thres1_param", TensorProto.FLOAT,
                                      (out_chn, 15)),
        helper.make_tensor_value_info("matmul_param", TensorProto.FLOAT,
                                      fc_param_shape),
        helper.make_tensor_value_info("thres2_param", TensorProto.FLOAT,
                                      (fc_filters, 15)),
        helper.make_tensor_value_info("reshape_shape", TensorProto.INT64, []),
    ]

    if use_reshape:
        flatten_node = helper.make_node("Reshape",
                                        ["thres1_out", "reshape_shape"],
                                        ["flatten_out"])
    else:
        flatten_node = helper.make_node("Flatten", ["thres1_out"],
                                        ["flatten_out"],
                                        axis=1)

    modelproto = helper.make_model(
        helper.make_graph(
            name="test",
            inputs=[global_in],
            outputs=[global_out],
            value_info=value_info,
            nodes=[
                helper.make_node("Conv", ["global_in", "conv_param"],
                                 ["conv_out"], **conv_config),
                helper.make_node(
                    "MultiThreshold",
                    ["conv_out", "thres1_param"],
                    ["thres1_out"],
                    domain="finn.custom_op.general",
                    out_dtype="UINT4",
                ),
                flatten_node,
                helper.make_node("MatMul", ["flatten_out", "matmul_param"],
                                 ["matmul_out"]),
                helper.make_node(
                    "MultiThreshold",
                    ["matmul_out", "thres2_param"],
                    ["global_out"],
                    domain="finn.custom_op.general",
                    out_dtype="UINT4",
                ),
            ],
        ))

    model = ModelWrapper(modelproto)
    model.set_tensor_datatype("global_in", idt)
    model.set_tensor_layout("global_in", DataLayout.NCHW)
    model.set_tensor_datatype("global_out", odt)
    model.set_tensor_datatype("conv_param", conv_weight_dt)
    model.set_tensor_datatype("matmul_param", fc_weight_dt)
    model.set_tensor_datatype("thres1_param", DataType["INT32"])
    model.set_tensor_datatype("thres2_param", DataType["INT32"])

    model.set_initializer("conv_param",
                          gen_finn_dt_tensor(conv_weight_dt, conv_param_shape))
    model.set_initializer("thres1_param",
                          get_multithreshold_rand_params(out_chn, 15, seed=0))
    model.set_initializer(
        "thres2_param", get_multithreshold_rand_params(fc_filters, 15, seed=0))
    model.set_initializer("matmul_param",
                          gen_finn_dt_tensor(fc_weight_dt, fc_param_shape))
    model.set_initializer("reshape_shape", np.array([1, -1]))

    model = model.transform(InferShapes())
    model = model.transform(InferDataTypes())
    model = model.transform(InferDataLayouts())

    # streamlining
    new_model = model.transform(MoveScalarLinearPastInvariants())
    new_model = new_model.transform(Streamline())
    new_model = new_model.transform(LowerConvsToMatMul())
    new_model = new_model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
    new_model = new_model.transform(Streamline())
    new_model = new_model.transform(InferDataLayouts())
    new_model = new_model.transform(RemoveUnusedTensors())

    # convert_to_hls
    if depthwise is True:
        new_model = new_model.transform(to_hls.InferVVAU())
    new_model = new_model.transform(to_hls.InferQuantizedStreamingFCLayer())
    new_model = new_model.transform(to_hls.InferThresholdingLayer())
    new_model = new_model.transform(to_hls.InferConvInpGen())
    new_model = new_model.transform(to_hls.InferStreamingMaxPool())
    new_model = new_model.transform(RemoveCNVtoFCFlatten())
    new_model = new_model.transform(absorb.AbsorbConsecutiveTransposes())
    new_model = new_model.transform(GiveUniqueNodeNames())
    new_model = new_model.transform(InferDataLayouts())

    # prepare cppsim
    new_model = new_model.transform(PrepareCppSim())
    new_model = new_model.transform(CompileCppSim())
    new_model = new_model.transform(SetExecMode("cppsim"))

    # check for correct execution
    x = gen_finn_dt_tensor(idt, input_shape)
    inp_dict = {model.graph.input[0].name: x}
    assert oxe.compare_execution(model, new_model, inp_dict)

    num_transpose = len(new_model.get_nodes_by_op_type("Transpose"))
    num_flatten = len(new_model.get_nodes_by_op_type("Flatten"))
    num_reshape = len(new_model.get_nodes_by_op_type("Reshape"))

    # check if transpose->flatten was removed
    assert num_transpose == 1 and num_flatten == 0 and num_reshape == 0
def test_convert_to_hls_layers_synthetic(ch, ifmdim, idt):
    model = make_model(ch, ifmdim)
    model.save(export_onnx_path)
    model = ModelWrapper(export_onnx_path)
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(GiveReadableTensorNames())
    model = model.transform(InferDataLayouts())
    # model.save("golden.onnx")
    # generate test vectors of correct shape
    if ifmdim == -1:
        input_tensor_shape = (1, ch)
    else:
        input_tensor_shape = (1, ch, ifmdim, ifmdim)

    x = gen_finn_dt_tensor(idt, input_tensor_shape)

    # generate expected value from streamlined net
    input_dict = {model.graph.input[0].name: x}

    output_dict = oxe.execute_onnx(model, input_dict, True)
    produced_sum = output_dict[model.graph.output[0].name]
    chw_mul = model.get_initializer(model.graph.node[-1].input[1])
    chw_mul = 1
    expected_sum = chw_mul * np.sum(2 * (2 * x + 15.0),
                                    axis=(2, 3)) / (ifmdim * ifmdim)
    assert (produced_sum.flatten() == expected_sum.flatten()).all()

    model = model.transform(InferDataLayouts())

    # convert to hls
    model.set_tensor_datatype(model.graph.input[0].name, idt)
    # extra streamlining
    model = model.transform(MoveScalarLinearPastInvariants())
    model = model.transform(MoveAddPastMul())
    model = model.transform(CollapseRepeatedMul())
    model = model.transform(CollapseRepeatedAdd())
    # insert top-k node, which should absorb linear ops before it

    model = model.transform(InferShapes())
    model = model.transform(InferDataLayouts())
    model = model.transform(InferDataTypes())

    model = model.transform(to_hls.InferChannelwiseLinearLayer())
    model = model.transform(to_hls.InferAddStreamsLayer())
    model = model.transform(to_hls.InferGlobalAccPoolLayer())
    model = model.transform(MoveScalarLinearPastInvariants())
    model = model.transform(InsertTopK())
    model = model.transform(AbsorbScalarMulAddIntoTopK())
    model = model.transform(InferDataTypes())
    model = model.transform(to_hls.InferLabelSelectLayer())
    model = model.transform(AbsorbConsecutiveTransposes())
    model = model.transform(InferDataTypes())
    model = model.transform(to_hls.InferLabelSelectLayer())
    model = model.transform(to_hls.InferDuplicateStreamsLayer())

    model = model.transform(SortGraph())

    # model.save("golden_hls.onnx")
    # check topology status

    finn_nodes = model.get_finn_nodes()
    assert len(finn_nodes) == 9
    add_nodes = model.get_nodes_by_op_type("AddStreams_Batch")
    assert len(add_nodes) == 1
    pool_nodes = model.get_nodes_by_op_type("GlobalAccPool_Batch")
    assert len(pool_nodes) == 1
    label_nodes = model.get_nodes_by_op_type("LabelSelect_Batch")
    assert len(label_nodes) == 1
    channelwise_nodes = model.get_nodes_by_op_type("ChannelwiseOp_Batch")
    assert len(channelwise_nodes) == 5
    dup_nodes = model.get_nodes_by_op_type("DuplicateStreams_Batch")
    assert len(dup_nodes) == 1

    model = model.transform(PrepareCppSim())
    model = model.transform(CompileCppSim())
    model = model.transform(SetExecMode("cppsim"))

    output_dict = oxe.execute_onnx(model, input_dict, True)
    produced_topk_hls = output_dict[model.graph.output[0].name]
    topk_input = output_dict[model.graph.node[-1].input[0]]
    assert soft_verify_topk(topk_input, produced_topk_hls, 5)

    os.remove(export_onnx_path)