Beispiel #1
0
def nufft2(field, fx, fy, size=None, sign=1, eps=10**(-12)):
    """
    """
    if np.__name__ == 'cupy':
        fx = np.asnumpy(fx).astype(np.float64)
        fy = np.asnumpy(fy).astype(np.float64)
        image = np.asnumpy(np.copy(field)).astype(np.complex128)
    else:
        image = np.copy(field).astype(np.complex128)
    if type(size) == type(None):
        result = finufft.nufft2d1(fx.flatten(),
                                  fy.flatten(),
                                  image.flatten(),
                                  image.shape,
                                  eps=eps,
                                  isign=sign)
    else:
        result = finufft.nufft2d1(fx.flatten(),
                                  fy.flatten(),
                                  image.flatten(), (size[0], size[1]),
                                  eps=eps,
                                  isign=sign)

    if np.__name__ == 'cupy':
        result = np.asarray(result)
    return result
Beispiel #2
0
def nuifft2(field, fx, fy, size=None, sign=1, eps=10**(-12)):
    """
    A definition to take 2D Adjoint Non-Uniform Fast Fourier Transform (NUFFT).

    Parameters
    ----------
    field       : ndarray
                  Input field.
    fx          : ndarray
                  Frequencies along x axis.
    fy          : ndarray
                  Frequencies along y axis.
    size        : list or ndarray
                  Shape of the NUFFT calculated for an input field.
    sign        : float
                  Sign of the exponential used in NUFFT kernel.
    eps         : float
                  Accuracy of NUFFT.

    Returns
    ----------
    result      : ndarray
                  NUFFT of the input field.
    """
    if np.__name__ == 'cupy':
        fx = np.asnumpy(fx).astype(np.float64)
        fy = np.asnumpy(fy).astype(np.float64)
        image = np.asnumpy(np.copy(field)).astype(np.complex128)
    else:
        image = np.copy(field).astype(np.complex128)
    if type(size) == type(None):
        result = finufft.nufft2d1(fx.flatten(),
                                  fy.flatten(),
                                  image.flatten(),
                                  image.shape,
                                  eps=eps,
                                  isign=sign)
    else:
        result = finufft.nufft2d1(fx.flatten(),
                                  fy.flatten(),
                                  image.flatten(), (size[0], size[1]),
                                  eps=eps,
                                  isign=sign)
    if np.__name__ == 'cupy':
        result = np.asarray(result)
    return result
Beispiel #3
0
def test_nufft2d1(seed=42, iflag=1):
    np.random.seed(seed)

    ms = 100
    mt = 89
    n = int(1e3)
    tol = 1.0e-9

    x = np.random.uniform(-np.pi, np.pi, n)
    y = np.random.uniform(-np.pi, np.pi, n)
    c = np.random.uniform(-1.0, 1.0,
                          n) + 1.0j * np.random.uniform(-1.0, 1.0, n)
    f = finufft.nufft2d1(x, y, c, ms, mt, eps=tol, iflag=iflag)
    f0 = interface.dirft2d1(x, y, c, ms, mt, iflag=iflag)
    assert np.all(np.abs((f - f0) / f0) < 1e-6)
Beispiel #4
0
def with_finufft(uvw, freq, ms, wgt, nxdirty, nydirty, xpixsize, ypixsize,
                 mask, epsilon):
    u = np.outer(uvw[:, 0], freq) * (xpixsize / SPEEDOFLIGHT) * 2 * np.pi
    v = np.outer(uvw[:, 1], freq) * (ypixsize / SPEEDOFLIGHT) * 2 * np.pi
    if wgt is not None:
        ms = ms * wgt
    if mask is not None:
        ms = ms * mask
    eps = epsilon / 10  # Apparently finufft measures epsilon differently
    # Plan on the fly
    res0 = finufft.nufft2d1(u.ravel(),
                            v.ravel(),
                            ms.ravel(), (nxdirty, nydirty),
                            eps=eps).real
    # Plan beforehand
    plan = finufft.Plan(1, (nxdirty, nydirty), eps=eps)
    plan.setpts(u.ravel(), v.ravel())
    res1 = plan.execute(ms.ravel()).real
    np.testing.assert_allclose(res0, res1)
    return res0
# ahb updated for v2.0 interface, and complex c. Bug seems to have been fixed :)

import numpy as np

from finufft import nufft2d1

c = np.complex128(np.random.rand(2))

omega = np.arange(4).reshape((2, 2)) / 3 * np.pi

x0 = omega[:, 0]
y0 = omega[:, 1]

f0 = np.zeros((4, 4), order='F', dtype=np.complex128)

nufft2d1(x0, y0, c, f0.shape, out=f0, eps=1e-14)

x1 = x0.copy()
y1 = y0.copy()

f1 = np.zeros((4, 4), order='F', dtype=np.complex128)

nufft2d1(x1, y1, c, f1.shape, out=f1, eps=1e-14)

print('difference: %e' % np.linalg.norm(f0 - f1))
def accuracy_speed_tests(num_nonuniform_points, num_uniform_points, eps):
    nj, nk = int(num_nonuniform_points), int(num_nonuniform_points)
    iflag = 1
    num_samples = int(
        np.minimum(5, num_uniform_points * 0.5 + 1)
    )  # number of outputs used for estimating accuracy; is small for speed

    print(
        'Accuracy and speed tests for %d nonuniform points and eps=%g (error estimates use %d samples per run)'
        % (num_nonuniform_points, eps, num_samples))

    # for doing the error estimates
    Xest = np.zeros(num_samples, dtype=np.complex128)
    Xtrue = np.zeros(num_samples, dtype=np.complex128)

    ###### 1-d cases ........................................................
    ms = int(num_uniform_points)

    xj = np.random.rand(nj) * 2 * math.pi - math.pi
    cj = np.random.rand(nj) + 1j * np.random.rand(nj)
    fk = np.zeros([ms], dtype=np.complex128)
    timer = time.time()
    ret = finufft.nufft1d1(xj, cj, ms, fk, eps, iflag)
    elapsed = time.time() - timer

    k = np.arange(-np.floor(ms / 2), np.floor((ms - 1) / 2 + 1))
    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(cj * np.exp(1j * k[ii] * xj))
        Xtrue[ii] = fk[ii]
    print_report('finufft1d1', elapsed, Xest, Xtrue, nj)

    xj = np.random.rand(nj) * 2 * math.pi - math.pi
    cj = np.zeros([nj], dtype=np.complex128)
    fk = np.random.rand(ms) + 1j * np.random.rand(ms)
    timer = time.time()
    ret = finufft.nufft1d2(xj, fk, cj, eps, iflag)
    elapsed = time.time() - timer

    k = np.arange(-np.floor(ms / 2), np.floor((ms - 1) / 2 + 1))
    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(fk * np.exp(1j * k * xj[ii]))
        Xtrue[ii] = cj[ii]
    print_report('finufft1d2', elapsed, Xest, Xtrue, nj)

    x = np.random.rand(nj) * 2 * math.pi - math.pi
    c = np.random.rand(nj) + 1j * np.random.rand(nj)
    s = np.random.rand(nk) * 2 * math.pi - math.pi
    f = np.zeros([nk], dtype=np.complex128)
    timer = time.time()
    ret = finufft.nufft1d3(x, c, s, f, eps, iflag)
    elapsed = time.time() - timer

    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(c * np.exp(1j * s[ii] * x))
        Xtrue[ii] = f[ii]
    print_report('finufft1d3', elapsed, Xest, Xtrue, nj + nk)

    ###### 2-d cases ....................................................
    ms = int(np.ceil(np.sqrt(num_uniform_points)))
    mt = ms

    xj = np.random.rand(nj) * 2 * math.pi - math.pi
    yj = np.random.rand(nj) * 2 * math.pi - math.pi
    cj = np.random.rand(nj) + 1j * np.random.rand(nj)
    fk = np.zeros([ms, mt], dtype=np.complex128)
    timer = time.time()
    ret = finufft.nufft2d1(xj, yj, cj, (ms, mt), fk, eps, iflag)
    elapsed = time.time() - timer

    Ks, Kt = np.mgrid[-np.floor(ms / 2):np.floor((ms - 1) / 2 + 1),
                      -np.floor(mt / 2):np.floor((mt - 1) / 2 + 1)]

    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(
            cj * np.exp(1j * (Ks.ravel()[ii] * xj + Kt.ravel()[ii] * yj)))
        Xtrue[ii] = fk.ravel()[ii]
    print_report('finufft2d1', elapsed, Xest, Xtrue, nj)

    ## 2d1many:
    ndata = 8  # how many vectors to do
    cj = np.array(np.random.rand(ndata, nj) + 1j * np.random.rand(ndata, nj))
    fk = np.zeros([ndata, ms, mt], dtype=np.complex128)
    timer = time.time()
    ret = finufft.nufft2d1(xj, yj, cj, ms, fk, eps, iflag)
    elapsed = time.time() - timer

    dtest = ndata - 1  # which of the ndata to test (in 0,..,ndata-1)
    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(
            cj[dtest, :] * np.exp(1j *
                                  (Ks.ravel()[ii] * xj + Kt.ravel()[ii] * yj))
        )  # note fortran-ravel-order needed throughout - mess.
        Xtrue[ii] = fk.ravel()[
            ii + dtest * ms *
            mt]  # hack the offset in fk array - has to be better way
    print_report('finufft2d1many', elapsed, Xest, Xtrue, ndata * nj)

    # 2d2
    xj = np.random.rand(nj) * 2 * math.pi - math.pi
    yj = np.random.rand(nj) * 2 * math.pi - math.pi
    cj = np.zeros([nj], dtype=np.complex128)
    fk = np.random.rand(ms, mt) + 1j * np.random.rand(ms, mt)
    timer = time.time()
    ret = finufft.nufft2d2(xj, yj, fk, cj, eps, iflag)
    elapsed = time.time() - timer

    Ks, Kt = np.mgrid[-np.floor(ms / 2):np.floor((ms - 1) / 2 + 1),
                      -np.floor(mt / 2):np.floor((mt - 1) / 2 + 1)]
    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(fk * np.exp(1j * (Ks * xj[ii] + Kt * yj[ii])))
        Xtrue[ii] = cj[ii]
    print_report('finufft2d2', elapsed, Xest, Xtrue, nj)

    # 2d2many (using same ndata and dtest as 2d1many; see above)
    cj = np.zeros([ndata, nj], dtype=np.complex128)
    fk = np.array(
        np.random.rand(ndata, ms, mt) + 1j * np.random.rand(ndata, ms, mt))
    timer = time.time()
    ret = finufft.nufft2d2(xj, yj, fk, cj, eps, iflag)
    elapsed = time.time() - timer

    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(fk[dtest, :, :] *
                          np.exp(1j * (Ks * xj[ii] + Kt * yj[ii])))
        Xtrue[ii] = cj[dtest, ii]
    print_report('finufft2d2many', elapsed, Xest, Xtrue, ndata * nj)

    # 2d3
    x = np.random.rand(nj) * 2 * math.pi - math.pi
    y = np.random.rand(nj) * 2 * math.pi - math.pi
    c = np.random.rand(nj) + 1j * np.random.rand(nj)
    s = np.random.rand(nk) * 2 * math.pi - math.pi
    t = np.random.rand(nk) * 2 * math.pi - math.pi
    f = np.zeros([nk], dtype=np.complex128)
    timer = time.time()
    ret = finufft.nufft2d3(x, y, c, s, t, f, eps, iflag)
    elapsed = time.time() - timer

    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(c * np.exp(1j * (s[ii] * x + t[ii] * y)))
        Xtrue[ii] = f[ii]
    print_report('finufft2d3', elapsed, Xest, Xtrue, nj + nk)

    ###### 3-d cases ............................................................
    ms = int(np.ceil(num_uniform_points**(1.0 / 3)))
    mt = ms
    mu = ms

    xj = np.random.rand(nj) * 2 * math.pi - math.pi
    yj = np.random.rand(nj) * 2 * math.pi - math.pi
    zj = np.random.rand(nj) * 2 * math.pi - math.pi
    cj = np.random.rand(nj) + 1j * np.random.rand(nj)
    fk = np.zeros([ms, mt, mu], dtype=np.complex128)
    timer = time.time()
    ret = finufft.nufft3d1(xj, yj, zj, cj, fk.shape, fk, eps, iflag)
    elapsed = time.time() - timer

    Ks, Kt, Ku = np.mgrid[-np.floor(ms / 2):np.floor((ms - 1) / 2 + 1),
                          -np.floor(mt / 2):np.floor((mt - 1) / 2 + 1),
                          -np.floor(mu / 2):np.floor((mu - 1) / 2 + 1)]
    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(cj * np.exp(
            1j *
            (Ks.ravel()[ii] * xj + Kt.ravel()[ii] * yj + Ku.ravel()[ii] * zj)))
        Xtrue[ii] = fk.ravel()[ii]
    print_report('finufft3d1', elapsed, Xest, Xtrue, nj)

    xj = np.random.rand(nj) * 2 * math.pi - math.pi
    yj = np.random.rand(nj) * 2 * math.pi - math.pi
    zj = np.random.rand(nj) * 2 * math.pi - math.pi
    cj = np.zeros([nj], dtype=np.complex128)
    fk = np.random.rand(ms, mt, mu) + 1j * np.random.rand(ms, mt, mu)
    timer = time.time()
    ret = finufft.nufft3d2(xj, yj, zj, fk, cj, eps, iflag)
    elapsed = time.time() - timer

    Ks, Kt, Ku = np.mgrid[-np.floor(ms / 2):np.floor((ms - 1) / 2 + 1),
                          -np.floor(mt / 2):np.floor((mt - 1) / 2 + 1),
                          -np.floor(mu / 2):np.floor((mu - 1) / 2 + 1)]
    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(
            fk * np.exp(1j * (Ks * xj[ii] + Kt * yj[ii] + Ku * zj[ii])))
        Xtrue[ii] = cj[ii]
    print_report('finufft3d2', elapsed, Xest, Xtrue, nj)

    x = np.random.rand(nj) * 2 * math.pi - math.pi
    y = np.random.rand(nj) * 2 * math.pi - math.pi
    z = np.random.rand(nj) * 2 * math.pi - math.pi
    c = np.random.rand(nj) + 1j * np.random.rand(nj)
    s = np.random.rand(nk) * 2 * math.pi - math.pi
    t = np.random.rand(nk) * 2 * math.pi - math.pi
    u = np.random.rand(nk) * 2 * math.pi - math.pi
    f = np.zeros([nk], dtype=np.complex128)
    timer = time.time()
    ret = finufft.nufft3d3(x, y, z, c, s, t, u, f, eps, iflag)
    elapsed = time.time() - timer

    for ii in np.arange(0, num_samples):
        Xest[ii] = np.sum(c * np.exp(1j * (s[ii] * x + t[ii] * y + u[ii] * z)))
        Xtrue[ii] = f[ii]
    print_report('finufft3d3', elapsed, Xest, Xtrue, nj + nk)
Beispiel #7
0
import time
np.random.seed(42)

# number of nonuniform points
M = 100000

# the nonuniform points in the square [0,2pi)^2
x = 2 * np.pi * np.random.uniform(size=M)
y = 2 * np.pi * np.random.uniform(size=M)

# their complex strengths
c = (np.random.standard_normal(size=M) +
     1J * np.random.standard_normal(size=M))

# desired number of Fourier modes (in x,y directions respectively)
N1 = 1000
N2 = 2000

# calculate the transform
t0 = time.time()
f = finufft.nufft2d1(x, y, c, (N1, N2), eps=1e-9)
print("finufft2d1 done in {0:.2g} s.".format(time.time() - t0))

k1 = 376  # do a math check, for a single output mode index (k1,k2)
k2 = -1000
assert ((k1 >= -N1 / 2.) & (k1 < N1 / 2.))  # float division easier here
assert ((k2 >= -N2 / 2.) & (k2 < N2 / 2.))
ftest = sum(c * np.exp(1.j * (k1 * x + k2 * y)))
err = np.abs(f[k1 + N1 // 2, k2 + N2 // 2] - ftest) / np.max(np.abs(f))
print("Error relative to max: {0:.2e}".format(err))
import numpy as np

from finufft import nufft2d1

c = np.arange(2)

omega = np.arange(4).reshape((2, 2)) / 3 * np.pi

x0 = omega[:, 0]
y0 = omega[:, 1]

f0 = np.zeros((4, 4), order='F', dtype=np.complex128)

nufft2d1(x0, y0, c, 1, 1e-15, f0.shape[0], f0.shape[1], f0)

x1 = x0.copy()
y1 = y0.copy()

f1 = np.zeros((4, 4), order='F', dtype=np.complex128)

nufft2d1(x1, y1, c, 1, 1e-15, f1.shape[0], f1.shape[1], f1)

print('difference: %e' % np.linalg.norm(f0 - f1))