Beispiel #1
0
    def buildPhaseEquation(phase, theta):

        mPhiVar = phase - 0.5 + temperature * phase * (1 - phase)
        thetaMag = theta.getOld().getGrad().getMag()
        implicitSource = mPhiVar * (phase - (mPhiVar < 0))
        implicitSource += (2 * s + epsilon**2 * thetaMag) * thetaMag

        return TransientTerm(phaseTransientCoeff) == \
                  ExplicitDiffusionTerm(alpha**2) \
                  - ImplicitSourceTerm(implicitSource) \
                  + (mPhiVar > 0) * mPhiVar * phase
    def define_ode(self, current_time):

        x, y = self.mesh.faceCenters

        # Internal source specificatio - currently no functional
        internal_source_value = self.parameter.internal_source_value
        internal_source_region = self.parameter.internal_source_region

        internal_source_mask = (
            (x > internal_source_region.xmin) &
            (x < internal_source_region.xmax) &
            (y > internal_source_region.ymin) &
            (y < internal_source_region.ymax)
        )

        # Get convection data
        convection = self.define_convection_variable(current_time)

        eq = TransientTerm() == - ConvectionTerm(coeff=convection) \
            + DiffusionTerm(coeff=self.parameter.Diffusivity)\
            - ImplicitSourceTerm(coeff=self.parameter.Decay)\
            # + ImplicitSourceTerm(coeff=internal_source_value*internal_source_mask)  # Internal source not working

        return eq
Beispiel #3
0
phase = CellVariable(name='PhaseField', mesh=mesh, value=1.)

from fipy.variables.modularVariable import ModularVariable

theta = ModularVariable(name='Theta', mesh=mesh, value=1.)
theta.setValue(0., where=mesh.getCellCenters()[..., 0] > L / 2.)

from fipy.terms.implicitSourceTerm import ImplicitSourceTerm

mPhiVar = phase - 0.5 + temperature * phase * (1 - phase)
thetaMag = theta.getOld().getGrad().getMag()
implicitSource = mPhiVar * (phase - (mPhiVar < 0))
implicitSource += (2 * s + epsilon**2 * thetaMag) * thetaMag

from fipy.terms.transientTerm import TransientTerm
from fipy.terms.explicitDiffusionTerm import ExplicitDiffusionTerm
phaseEq = TransientTerm(phaseTransientCoeff) == \
          ExplicitDiffusionTerm(alpha**2) \
          - ImplicitSourceTerm(implicitSource) \
          + (mPhiVar > 0) * mPhiVar * phase

if __name__ == '__main__':

    import fipy.viewers
    phaseViewer = fipy.viewers.make(vars=phase)
    phaseViewer.plot()
    for step in range(steps):
        phaseEq.solve(phase, dt=timeStepDuration)
        phaseViewer.plot()
    raw_input('finished')
Beispiel #4
0
shift = 1.

KMVar = CellVariable(mesh=mesh, value=params['KM'] * shift, hasOld=1)
KCVar = CellVariable(mesh=mesh, value=params['KC'] * shift, hasOld=1)
TMVar = CellVariable(mesh=mesh, value=params['TM'] * shift, hasOld=1)
TCVar = CellVariable(mesh=mesh, value=params['TC'] * shift, hasOld=1)
P3Var = CellVariable(mesh=mesh, value=params['P3'] * shift, hasOld=1)
P2Var = CellVariable(mesh=mesh, value=params['P2'] * shift, hasOld=1)
RVar = CellVariable(mesh=mesh, value=params['R'], hasOld=1)

PN = P3Var + P2Var

KMscCoeff = params['chiK'] * (RVar + 1) * (1 - KCVar -
                                           KMVar.getCellVolumeAverage())
KMspCoeff = params['lambdaK'] / (1 + PN / params['kappaK'])
KMEq = TransientTerm() - KMscCoeff + ImplicitSourceTerm(KMspCoeff)

TMscCoeff = params['chiT'] * (1 - TCVar - TMVar.getCellVolumeAverage())
TMspCoeff = params['lambdaT'] * (KMVar + params['zetaT'])
TMEq = TransientTerm() - TMscCoeff + ImplicitSourceTerm(TMspCoeff)

TCscCoeff = params['lambdaT'] * (TMVar * KMVar).getCellVolumeAverage()
TCspCoeff = params['lambdaTstar']
TCEq = TransientTerm() - TCscCoeff + ImplicitSourceTerm(TCspCoeff)

PIP2PITP = PN / (PN / params['kappam'] + PN.getCellVolumeAverage() /
                 params['kappac'] + 1) + params['zetaPITP']

P3spCoeff = params['lambda3'] * (TMVar + params['zeta3T'])
P3scCoeff = params['chi3'] * KMVar * (PIP2PITP /
                                      (1 + KMVar / params['kappa3']) +
Beispiel #5
0
def buildMetalIonDiffusionEquation(ionVar=None,
                                   distanceVar=None,
                                   depositionRate=1,
                                   transientCoeff=1,
                                   diffusionCoeff=1,
                                   metalIonMolarVolume=1):
    r"""

    The `MetalIonDiffusionEquation` solves the diffusion of the metal
    species with a source term at the electrolyte interface. The governing
    equation is given by,

    .. math::

       \frac{\partial c}{\partial t} = \nabla \cdot D \nabla  c

    where,

    .. math::

       D = \begin{cases}
           D_c & \text{when $\phi > 0$} \\
           0  & \text{when $\phi \le 0$}
       \end{cases}

    The velocity of the interface generally has a linear dependence on ion
    concentration. The following boundary condition applies at the zero
    level set,

    .. math::

       D \hat{n} \cdot \nabla c = \frac{v(c)}{\Omega} \qquad \text{at $phi = 0$}

    where

    .. math::

       v(c) = c V_0

    The test case below is for a 1D steady state problem. The solution is
    given by:

    .. math::

       c(x) = \frac{c^{\infty}}{\Omega D / V_0 + L}\left(x - L\right) + c^{\infty}

    This is the test case,

    >>> from fipy.meshes import Grid1D
    >>> nx = 11
    >>> dx = 1.
    >>> from fipy.tools import serialComm
    >>> mesh = Grid1D(nx = nx, dx = dx, communicator=serialComm)
    >>> x, = mesh.cellCenters
    >>> from fipy.variables.cellVariable import CellVariable
    >>> ionVar = CellVariable(mesh = mesh, value = 1.)
    >>> from fipy.variables.distanceVariable \
    ...     import DistanceVariable
    >>> disVar = DistanceVariable(mesh = mesh,
    ...                           value = (x - 0.5) - 0.99,
    ...                           hasOld = 1)

    >>> v = 1.
    >>> diffusion = 1.
    >>> omega = 1.
    >>> cinf = 1.

    >>> eqn = buildMetalIonDiffusionEquation(ionVar = ionVar,
    ...                                      distanceVar = disVar,
    ...                                      depositionRate = v * ionVar,
    ...                                      diffusionCoeff = diffusion,
    ...                                      metalIonMolarVolume = omega)

    >>> ionVar.constrain(cinf, mesh.facesRight)

    >>> from builtins import range
    >>> for i in range(10):
    ...     eqn.solve(ionVar, dt = 1000)

    >>> L = (nx - 1) * dx - dx / 2
    >>> gradient = cinf / (omega * diffusion / v + L)
    >>> answer = gradient * (x - L - dx * 3 / 2) + cinf
    >>> answer[x < dx] = 1
    >>> print(ionVar.allclose(answer))
    1

    Testing the interface source term

    >>> from fipy.meshes import Grid2D
    >>> from fipy import numerix, serialComm
    >>> mesh = Grid2D(dx = 1., dy = 1., nx = 2, ny = 2, communicator=serialComm)
    >>> from fipy.variables.distanceVariable import DistanceVariable
    >>> distance = DistanceVariable(mesh = mesh, value = (-.5, .5, .5, 1.5))
    >>> ionVar = CellVariable(mesh = mesh, value = (1, 1, 1, 1))
    >>> depositionRate = CellVariable(mesh=mesh, value=(1, 1, 1, 1))
    >>> source = depositionRate * distance.cellInterfaceAreas / mesh.cellVolumes / ionVar
    >>> sqrt = numerix.sqrt(2)
    >>> ans = CellVariable(mesh=mesh, value=(0, 1 / sqrt, 1 / sqrt, 0))
    >>> print(numerix.allclose(source, ans))
    True
    >>> distance[:] = (-1.5, -0.5, -0.5, 0.5)
    >>> print(numerix.allclose(source, (0, 0, 0, sqrt)))
    True

    :Parameters:
      - `ionVar`: The metal ion concentration variable.
      - `distanceVar`: A `DistanceVariable` object.
      - `depositionRate`: A float or a `CellVariable` representing the interface deposition rate.
      - `transientCoeff`: The transient coefficient.
      - `diffusionCoeff`: The diffusion coefficient
      - `metalIonMolarVolume`: Molar volume of the metal ions.

    """

    diffusionCoeff = _LevelSetDiffusionVariable(distanceVar, diffusionCoeff)

    eq = TransientTerm(transientCoeff) - DiffusionTermNoCorrection(
        diffusionCoeff)

    mesh = distanceVar.mesh
    coeff = depositionRate * distanceVar.cellInterfaceAreas / (
        mesh.cellVolumes * metalIonMolarVolume) / ionVar

    return eq + ImplicitSourceTerm(coeff)
Beispiel #6
0
def buildSurfactantBulkDiffusionEquation(bulkVar=None,
                                         distanceVar=None,
                                         surfactantVar=None,
                                         otherSurfactantVar=None,
                                         diffusionCoeff=None,
                                         transientCoeff=1.,
                                         rateConstant=None):
    r"""

    The `buildSurfactantBulkDiffusionEquation` function returns a bulk diffusion of a
    species with a source term for the jump from the bulk to an interface.
    The governing equation is given by,

    .. math::

       \frac{\partial c}{\partial t} = \nabla \cdot D \nabla  c

    where,

    .. math::

       D = \begin{cases}
           D_c & \text{when $\phi > 0$} \\
           0  & \text{when $\phi \le 0$}
       \end{cases}

    The jump condition at the interface is defined by Langmuir
    adsorption. Langmuir adsorption essentially states that the ability for
    a species to jump from an electrolyte to an interface is proportional to
    the concentration in the electrolyte, available site density and a
    jump coefficient. The boundary condition at the interface is given by

    .. math::

       D \hat{n} \cdot \nabla c = -k c (1 - \theta) \qquad \text{at $\phi = 0$}.

    Parameters
    ----------
    bulkVar : ~fipy.variables.cellVariable.CellVariable
        The bulk surfactant concentration variable.
    distanceVar : ~fipy.variables.distanceVariable.DistanceVariable
    surfactantVar : ~fipy.variables.surfactantVariable.SurfactantVariable
    otherSurfactantVar : ~fipy.variables.surfactantVariable.SurfactantVariable
        Any other surfactants that may remove this one.
    diffusionCoeff : float or ~fipy.variables.faceVariable.FaceVariable
    transientCoeff : float
        In general 1 is used.
    rateConstant : float
        The adsorption coefficient.

    """

    spCoeff = rateConstant * distanceVar.cellInterfaceAreas / bulkVar.mesh.cellVolumes
    spSourceTerm = ImplicitSourceTerm(spCoeff)

    bulkSpCoeff = spCoeff * bulkVar
    coeff = bulkSpCoeff * surfactantVar.interfaceVar

    diffusionCoeff = _LevelSetDiffusionVariable(distanceVar, diffusionCoeff)

    eq = TransientTerm(transientCoeff) - DiffusionTermNoCorrection(
        diffusionCoeff)

    if otherSurfactantVar is not None:
        otherCoeff = bulkSpCoeff * otherSurfactantVar.interfaceVar
    else:
        otherCoeff = 0

    return eq - coeff + spSourceTerm - otherCoeff
Beispiel #7
0
    phaseY = phase.getFaceGrad().dot((0, 1))
    phaseX = phase.getFaceGrad().dot((1, 0))
    psi = theta + numerix.arctan2(phaseY, phaseX)
    Phi = numerix.tan(N * psi / 2)
    PhiSq = Phi**2
    beta = (1. - PhiSq) / (1. + PhiSq)
    betaPsi = -N * 2 * Phi / (1 + PhiSq)
    A = alpha**2 * c * (1. + c * beta) * betaPsi
    D = alpha**2 * (1. + c * beta)**2
    dxi = phase.getFaceGrad()._take((1, 0), axis=1) * (-1, 1)
    anisotropySource = (A * dxi).getDivergence()
    from fipy.terms.transientTerm import TransientTerm
    from fipy.terms.explicitDiffusionTerm import ExplicitDiffusionTerm
    from fipy.terms.implicitSourceTerm import ImplicitSourceTerm
    phaseEq = TransientTerm(tau) == ExplicitDiffusionTerm(D) + \
        ImplicitSourceTerm(mVar * ((mVar < 0) - phase)) + \
        ((mVar > 0.) * mVar * phase + anisotropySource)

    from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
    temperatureEq = TransientTerm() == \
                    ImplicitDiffusionTerm(tempDiffusionCoeff) + \
                    (phase - phase.getOld()) / timeStepDuration

    bench.stop('terms')

    phase.updateOld()
    temperature.updateOld()
    phaseEq.solve(phase, dt=timeStepDuration)
    temperatureEq.solve(temperature, dt=timeStepDuration)

    steps = 10
Beispiel #8
0
    def __init__(self,
                 surfactantVar=None,
                 distanceVar=None,
                 bulkVar=None,
                 rateConstant=None,
                 otherVar=None,
                 otherBulkVar=None,
                 otherRateConstant=None,
                 consumptionCoeff=None):
        """
        Create a `AdsorbingSurfactantEquation` object.

        :Parameters:
          - `surfactantVar`: The `SurfactantVariable` to be solved for.
          - `distanceVar`: The `DistanceVariable` that marks the interface.
          - `bulkVar`: The value of the `surfactantVar` in the bulk.
          - `rateConstant`: The adsorption rate of the `surfactantVar`.
          - `otherVar`: Another `SurfactantVariable` with more surface affinity.
          - `otherBulkVar`: The value of the `otherVar` in the bulk.
          - `otherRateConstant`: The adsorption rate of the `otherVar`.
          - `consumptionCoeff`: The rate that the `surfactantVar` is consumed during deposition.

        """

        self.eq = TransientTerm(coeff=1) - ExplicitUpwindConvectionTerm(
            SurfactantConvectionVariable(distanceVar))

        self.dt = Variable(0.)
        mesh = distanceVar.mesh
        adsorptionCoeff = self.dt * bulkVar * rateConstant
        spCoeff = adsorptionCoeff * distanceVar._cellInterfaceFlag
        scCoeff = adsorptionCoeff * distanceVar.cellInterfaceAreas / mesh.cellVolumes

        self.eq += ImplicitSourceTerm(spCoeff) - scCoeff

        if otherVar is not None:
            otherSpCoeff = self.dt * otherBulkVar * otherRateConstant * distanceVar._cellInterfaceFlag
            otherScCoeff = -otherVar.interfaceVar * scCoeff

            self.eq += ImplicitSourceTerm(otherSpCoeff) - otherScCoeff

            vars = (surfactantVar, otherVar)
        else:
            vars = (surfactantVar, )

        total = 0
        for var in vars:
            total += var.interfaceVar
        maxVar = (total > 1) * distanceVar._cellInterfaceFlag

        val = distanceVar.cellInterfaceAreas / mesh.cellVolumes
        for var in vars[1:]:
            val -= distanceVar._cellInterfaceFlag * var

        spMaxCoeff = 1e20 * maxVar
        scMaxCoeff = spMaxCoeff * val * (val > 0)

        self.eq += ImplicitSourceTerm(spMaxCoeff) - scMaxCoeff - 1e-40

        if consumptionCoeff is not None:
            self.eq += ImplicitSourceTerm(consumptionCoeff)