Beispiel #1
0
def create_subdm(dm, fields, *args, **kwargs):
    """Callback to create a sub-DM describing the specified fields.

    :arg DM: The DM.
    :arg fields: The fields in the new sub-DM.

    .. note::

       This should, but currently does not, transfer appropriately
       split application contexts onto the sub-DMs.
    """
    W = get_function_space(dm)
    # TODO: Correct splitting of SNESContext for len(fields) > 1 case
    if len(fields) == 1:
        # Subspace is just a single FunctionSpace.
        idx = fields[0]
        subdm = W[idx].dm
        iset = W._ises[idx]
        return iset, subdm
    else:
        try:
            # Look up the subspace in the cache
            iset, subspace = W._subspaces[tuple(fields)]
            return iset, subspace.dm
        except KeyError:
            pass
        # Need to build an MFS for the subspace
        subspace = firedrake.MixedFunctionSpace([W[f] for f in fields])
        # Index set mapping from W into subspace.
        iset = PETSc.IS().createGeneral(numpy.concatenate([W._ises[f].indices
                                                           for f in fields]),
                                        comm=W.comm)
        # Keep hold of strong reference to created subspace (given we
        # only hold a weakref in the shell DM), and so we can
        # reuse it later.
        W._subspaces[tuple(fields)] = iset, subspace
        return iset, subspace.dm
Beispiel #2
0
    def construct_kronecker_matrix(self, interp_1d):
        """
        Construct the tensorized interpolation matrix.

        Do this by computing the kron product of the rows of
        the 1d univariate interpolation matrices.
        In the future, this may be done matrix-free.
        """
        # this is one of the two bottlenecks that slow down initiating Bsplines
        IFW = PETSc.Mat().create(self.comm)
        IFW.setType(PETSc.Mat.Type.AIJ)

        comm = self.comm
        # owned part of global problem
        local_N = self.N // comm.size + int(comm.rank < (self.N % comm.size))
        (lsize, gsize) = interp_1d[0].getSizes()[0]
        IFW.setSizes(((lsize, gsize), (local_N, self.N)))

        # guess sparsity pattern from interp_1d[0]
        for row in range(lsize):
            row = self.lg_map_fe.apply([row])[0]
            nnz_ = len(interp_1d[0].getRow(row)[0])  # lenght of nnz-array
            self.IFWnnz = max(self.IFWnnz, nnz_**self.dim)
        IFW.setPreallocationNNZ(self.IFWnnz)
        IFW.setUp()

        for row in range(lsize):
            row = self.lg_map_fe.apply([row])[0]
            M = [[A.getRow(row)[0],
                  A.getRow(row)[1],
                  A.getSize()[1]] for A in interp_1d]
            M = reduce(self.vectorkron, M)
            columns, values, lenght = M
            IFW.setValues([row], columns, values)

        IFW.assemble()
        return IFW
Beispiel #3
0
def create_subdm(dm, fields, *args, **kwargs):
    """Callback to create a sub-DM describing the specified fields.

    :arg DM: The DM.
    :arg fields: The fields in the new sub-DM.
    """
    W = get_function_space(dm)
    ctx = get_appctx(dm)
    coarsen = get_ctx_coarsener(dm)
    if len(fields) == 1:
        # Subspace is just a single FunctionSpace.
        idx, = fields
        subdm = W[idx].dm
        iset = W._ises[idx]
        if ctx is not None:
            ctx, = ctx.split([(idx, )])
            push_appctx(subdm, ctx)
            push_ctx_coarsener(subdm, coarsen)
        return iset, subdm
    else:
        # Need to build an MFS for the subspace
        subspace = firedrake.MixedFunctionSpace([W[f] for f in fields])

        # Pass any transfer operators over
        prolong, restrict, inject = get_transfer_operators(dm)
        push_transfer_operators(subspace.dm, prolong, restrict, inject)

        # Index set mapping from W into subspace.
        iset = PETSc.IS().createGeneral(numpy.concatenate(
            [W._ises[f].indices for f in fields]),
                                        comm=W.comm)
        if ctx is not None:
            ctx, = ctx.split([fields])
            push_appctx(subspace.dm, ctx)
            push_ctx_coarsener(subspace.dm, coarsen)
        return iset, subspace.dm
Beispiel #4
0
def create_interpolation(dmc, dmf):
    cctx = firedrake.dmhooks.get_appctx(dmc)
    fctx = firedrake.dmhooks.get_appctx(dmf)

    prolong, _, _ = firedrake.dmhooks.get_transfer_operators(dmc)
    _, restrict, _ = firedrake.dmhooks.get_transfer_operators(dmf)
    V_c = cctx._problem.u.function_space()
    V_f = fctx._problem.u.function_space()

    row_size = V_f.dof_dset.layout_vec.getSizes()
    col_size = V_c.dof_dset.layout_vec.getSizes()

    cfn = firedrake.Function(V_c)
    ffn = firedrake.Function(V_f)
    cbcs = cctx._problem.bcs
    fbcs = fctx._problem.bcs

    ctx = Interpolation(cfn, ffn, prolong, restrict, cbcs, fbcs)
    mat = PETSc.Mat().create(comm=dmc.comm)
    mat.setSizes((row_size, col_size))
    mat.setType(mat.Type.PYTHON)
    mat.setPythonContext(ctx)
    mat.setUp()
    return mat, None
Beispiel #5
0
    def initialize(self, obj):
        A, P = obj.getOperators()
        prefix = obj.getOptionsPrefix()
        V = get_function_space(obj.getDM())
        mesh = V.mesh()

        family = str(V.ufl_element().family())
        degree = V.ufl_element().degree()
        if family != 'Raviart-Thomas' or degree != 1:
            raise ValueError(
                "Hypre ADS requires lowest order RT elements! (not %s of degree %d)"
                % (family, degree))

        P1 = FunctionSpace(mesh, "Lagrange", 1)
        NC1 = FunctionSpace(mesh, "N1curl", 1)
        # DiscreteGradient
        G = Interpolator(grad(TestFunction(P1)), NC1).callable().handle
        # DiscreteCurl
        C = Interpolator(curl(TestFunction(NC1)), V).callable().handle

        pc = PETSc.PC().create(comm=obj.comm)
        pc.incrementTabLevel(1, parent=obj)
        pc.setOptionsPrefix(prefix + "hypre_ads_")
        pc.setOperators(A, P)

        pc.setType('hypre')
        pc.setHYPREType('ads')
        pc.setHYPREDiscreteGradient(G)
        pc.setHYPREDiscreteCurl(C)
        V = VectorFunctionSpace(mesh, "Lagrange", 1)
        linear_coordinates = interpolate(SpatialCoordinate(mesh),
                                         V).dat.data_ro.copy()
        pc.setCoordinates(linear_coordinates)

        pc.setUp()
        self.pc = pc
Beispiel #6
0
    def _build_monolithic_basis(self):
        r"""Build a basis for the complete mixed space.

        The monolithic basis is formed by the cartesian product of the
        bases forming each sub part.
        """
        self._vecs = []
        for idx, basis in enumerate(self):
            if isinstance(basis, VectorSpaceBasis):
                vecs = basis._vecs
                if basis._constant:
                    vecs = vecs + (function.Function(
                        self._function_space[idx]).assign(1), )
                for vec in vecs:
                    mvec = function.Function(self._function_space)
                    mvec.sub(idx).assign(vec)
                    self._vecs.append(mvec)

        self._petsc_vecs = []
        for v in self._vecs:
            with v.dat.vec_ro as v_:
                self._petsc_vecs.append(v_)

        # orthonormalize:
        basis = self._petsc_vecs
        for i, vec in enumerate(basis):
            alphas = []
            for vec_ in basis[:i]:
                alphas.append(vec.dot(vec_))
            for alpha, vec_ in zip(alphas, basis[:i]):
                vec.axpy(-alpha, vec_)
            vec.normalize()

        self._nullspace = PETSc.NullSpace().create(constant=False,
                                                   vectors=self._petsc_vecs,
                                                   comm=self.comm)
Beispiel #7
0
def plot_matrix(a_form, bcs=[], **kwargs):
    """Provides a plot of a matrix."""
    fig, ax = plt.subplots(1, 1)

    A = assemble(a_form, bcs=bcs, mat_type="aij")
    petsc_mat = A.M.handle

    size = petsc_mat.getSize()
    Mij = PETSc.Mat()
    petsc_mat.convert("aij", Mij)

    n, m = size
    Mnp = np.array(Mij.getValues(range(n), range(m)))
    Am = np.ma.masked_values(Mnp, 0, rtol=1e-13)

    # Plot the matrix
    plot = ax.matshow(Am, cmap=my_cmap, **kwargs)

    # Remove axis ticks and values
    ax.tick_params(length=0)
    ax.set_xticklabels([])
    ax.set_yticklabels([])

    return plot
def test_duplicate(a, bcs):

    test, trial = a.arguments()

    if test.function_space().shape == ():
        rhs_form = inner(Constant(1), test)*dx
    elif test.function_space().shape == (2, ):
        rhs_form = inner(Constant((1, 1)), test)*dx

    if bcs is not None:
        Af = assemble(a, mat_type="matfree", bcs=bcs)
        rhs = assemble(rhs_form, bcs=bcs)
    else:
        Af = assemble(a, mat_type="matfree")
        rhs = assemble(rhs_form)

    # matrix-free duplicate creates a matrix-free copy of Af
    # we have not implemented the default copy = False
    B_petsc = Af.petscmat.duplicate(copy=True)

    ksp = PETSc.KSP().create()
    ksp.setOperators(Af.petscmat)
    ksp.setFromOptions()

    solution1 = Function(test.function_space())
    solution2 = Function(test.function_space())

    # Solve system with original matrix A
    with rhs.dat.vec_ro as b, solution1.dat.vec as x:
        ksp.solve(b, x)

    # Multiply with copied matrix B
    with solution1.dat.vec_ro as x, solution2.dat.vec_ro as y:
        B_petsc.mult(x, y)
    # Check if original rhs is equal to BA^-1 (rhs)
    assert np.allclose(rhs.vector().array(), solution2.vector().array())
Beispiel #9
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC, assemble)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()

        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("The python context must be an ImplicitMatrixContext")

        test, trial = self.cxt.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        # Set up the KSP for the hdiv residual projection
        hdiv_mass_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_mass_ksp.setOptionsPrefix(prefix + "hdiv_residual_")

        # HDiv mass operator
        p = TrialFunction(V[self.vidx])
        q = TestFunction(V[self.vidx])
        mass = ufl.dot(p, q)*ufl.dx
        # TODO: Bcs?
        M = assemble(mass, bcs=None, form_compiler_parameters=self.cxt.fc_params)
        M.force_evaluation()
        Mmat = M.petscmat

        hdiv_mass_ksp.setOperators(Mmat)
        hdiv_mass_ksp.setUp()
        hdiv_mass_ksp.setFromOptions()
        self.hdiv_mass_ksp = hdiv_mass_ksp

        # Storing the result of A.inv * r, where A is the HDiv
        # mass matrix and r is the HDiv residual
        self._primal_r = Function(V[self.vidx])

        tau = TestFunction(V_d[self.vidx])
        self._assemble_broken_r = create_assembly_callable(
            ufl.dot(self._primal_r, tau)*ufl.dx,
            tensor=self.broken_residual.split()[self.vidx],
            form_compiler_parameters=self.cxt.fc_params)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d),
                   trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.cxt.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        # We zero out the contribution of the trace variables on the exterior
        # boundary. Extruded cells will have both horizontal and vertical
        # facets
        if mesh.cell_set._extruded:
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), "on_boundary"),
                         DirichletBC(TraceSpace, Constant(0.0), "bottom"),
                         DirichletBC(TraceSpace, Constant(0.0), "top")]
            K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS_h +
                       gammar('+') * ufl.dot(sigma, n) * ufl.dS_v)
        else:
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), "on_boundary")]
            K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS)

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.cxt.row_bcs:
            raise NotImplementedError("Strong BCs not currently handled. Try imposing them weakly.")

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * self.broken_residual,
            tensor=self.schur_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp, bcs=trace_bcs,
                                 form_compiler_parameters=self.cxt.fc_params)
        self._assemble_S = create_assembly_callable(schur_comp,
                                                    tensor=self.S,
                                                    bcs=trace_bcs,
                                                    form_compiler_parameters=self.cxt.fc_params)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Nullspace for the multiplier problem
        nullspace = create_schur_nullspace(P, -K * Atilde,
                                           V, V_d, TraceSpace,
                                           pc.comm)
        if nullspace:
            Smat.setNullSpace(nullspace)

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)

        # NOTE: The projection stage *might* be replaced by a Fortin
        # operator. We may want to allow the user to specify if they
        # wish to use a Fortin operator over a projection, or vice-versa.
        # In a future add-on, we can add a switch which chooses either
        # the Fortin reconstruction or the usual KSP projection.

        # Set up the projection KSP
        hdiv_projection_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_projection_ksp.setOptionsPrefix(prefix + 'hdiv_projection_')

        # Reuse the mass operator from the hdiv_mass_ksp
        hdiv_projection_ksp.setOperators(Mmat)

        # Construct the RHS for the projection stage
        self._projection_rhs = Function(V[self.vidx])
        self._assemble_projection_rhs = create_assembly_callable(
            ufl.dot(self.broken_solution.split()[self.vidx], q)*ufl.dx,
            tensor=self._projection_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Finalize ksp setup
        hdiv_projection_ksp.setUp()
        hdiv_projection_ksp.setFromOptions()
        self.hdiv_projection_ksp = hdiv_projection_ksp
Beispiel #10
0
def nonlocal_integral_eq(
    mesh,
    scatterer_bdy_id,
    outer_bdy_id,
    wave_number,
    options_prefix=None,
    solver_parameters=None,
    fspace=None,
    vfspace=None,
    true_sol_grad_expr=None,
    actx=None,
    dgfspace=None,
    dgvfspace=None,
    meshmode_src_connection=None,
    qbx_kwargs=None,
):
    r"""
        see run_method for descriptions of unlisted args

        args:

        gamma and beta are used to precondition
        with the following equation:

        \Delta u - \kappa^2 \gamma u = 0
        (\partial_n - i\kappa\beta) u |_\Sigma = 0
    """
    # make sure we get outer bdy id as tuple in case it consists of multiple ids
    if isinstance(outer_bdy_id, int):
        outer_bdy_id = [outer_bdy_id]
    outer_bdy_id = tuple(outer_bdy_id)
    # away from the excluded region, but firedrake and meshmode point
    # into
    pyt_inner_normal_sign = -1

    ambient_dim = mesh.geometric_dimension()

    # {{{ Build src and tgt

    # build connection meshmode near src boundary -> src boundary inside meshmode
    from meshmode.discretization.poly_element import \
        InterpolatoryQuadratureSimplexGroupFactory
    from meshmode.discretization.connection import make_face_restriction
    factory = InterpolatoryQuadratureSimplexGroupFactory(
        dgfspace.finat_element.degree)
    src_bdy_connection = make_face_restriction(actx,
                                               meshmode_src_connection.discr,
                                               factory, scatterer_bdy_id)
    # source is a qbx layer potential
    from pytential.qbx import QBXLayerPotentialSource
    disable_refinement = (fspace.mesh().geometric_dimension() == 3)
    qbx = QBXLayerPotentialSource(src_bdy_connection.to_discr,
                                  **qbx_kwargs,
                                  _disable_refinement=disable_refinement)

    # get target indices and point-set
    target_indices, target = get_target_points_and_indices(
        fspace, outer_bdy_id)

    # }}}

    # build the operations
    from pytential import bind, sym
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * sym.grad(
        ambient_dim,
        sym.D(HelmholtzKernel(ambient_dim),
              sym.var("u"),
              k=sym.var("k"),
              qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
    """
    op = pyt_inner_normal_sign * 1j * sym.var("k") * (sym.D(
        HelmholtzKernel(ambient_dim),
        sym.var("u"),
        k=sym.var("k"),
        qbx_forced_limit=None))

    # bind the operations
    pyt_grad_op = bind((qbx, target), grad_op)
    pyt_op = bind((qbx, target), op)

    # }}}

    class MatrixFreeB(object):
        def __init__(self, A, pyt_grad_op, pyt_op, actx, kappa):
            """
            :arg kappa: The wave number
            """

            self.actx = actx
            self.k = kappa
            self.pyt_op = pyt_op
            self.pyt_grad_op = pyt_grad_op
            self.A = A
            self.meshmode_src_connection = meshmode_src_connection

            # {{{ Create some functions needed for multing
            self.x_fntn = Function(fspace)

            # CG
            self.potential_int = Function(fspace)
            self.potential_int.dat.data[:] = 0.0
            self.grad_potential_int = Function(vfspace)
            self.grad_potential_int.dat.data[:] = 0.0
            self.pyt_result = Function(fspace)

            self.n = FacetNormal(mesh)
            self.v = TestFunction(fspace)

            # some meshmode ones
            self.x_mm_fntn = self.meshmode_src_connection.discr.empty(
                self.actx, dtype='c')

            # }}}

        def mult(self, mat, x, y):
            # Copy function data into the fivredrake function
            self.x_fntn.dat.data[:] = x[:]
            # Transfer the function to meshmode
            self.meshmode_src_connection.from_firedrake(project(
                self.x_fntn, dgfspace),
                                                        out=self.x_mm_fntn)
            # Restrict to boundary
            x_mm_fntn_on_bdy = src_bdy_connection(self.x_mm_fntn)

            # Apply the operation
            potential_int_mm = self.pyt_op(self.actx,
                                           u=x_mm_fntn_on_bdy,
                                           k=self.k)
            grad_potential_int_mm = self.pyt_grad_op(self.actx,
                                                     u=x_mm_fntn_on_bdy,
                                                     k=self.k)
            # Store in firedrake
            self.potential_int.dat.data[target_indices] = potential_int_mm.get(
            )
            for dim in range(grad_potential_int_mm.shape[0]):
                self.grad_potential_int.dat.data[
                    target_indices, dim] = grad_potential_int_mm[dim].get()

            # Integrate the potential
            r"""
            Compute the inner products using firedrake. Note this
            will be subtracted later, hence appears off by a sign.

            .. math::

                \langle
                    n(x) \cdot \nabla(
                        \int_\Gamma(
                            u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                        )d\gamma(y)
                    ), v
                \rangle_\Sigma
                - \langle
                    i \kappa \cdot
                    \int_\Gamma(
                        u(y) \partial_n H_0^{(1)}(\kappa |x - y|)
                    )d\gamma(y), v
                \rangle_\Sigma
            """
            self.pyt_result = assemble(
                inner(inner(self.grad_potential_int, self.n), self.v) *
                ds(outer_bdy_id) -
                inner(self.potential_int, self.v) * ds(outer_bdy_id))

            # y <- Ax - evaluated potential
            self.A.mult(x, y)
            with self.pyt_result.dat.vec_ro as ep:
                y.axpy(-1, ep)

    # {{{ Compute normal helmholtz operator
    u = TrialFunction(fspace)
    v = TestFunction(fspace)
    r"""
    .. math::

        \langle
            \nabla u, \nabla v
        \rangle
        - \kappa^2 \cdot \langle
            u, v
        \rangle
        - i \kappa \langle
            u, v
        \rangle_\Sigma
    """
    a = inner(grad(u), grad(v)) * dx \
        - Constant(wave_number**2) * inner(u, v) * dx \
        - Constant(1j * wave_number) * inner(u, v) * ds(outer_bdy_id)

    # get the concrete matrix from a general bilinear form
    A = assemble(a).M.handle
    # }}}

    # {{{ Setup Python matrix
    B = PETSc.Mat().create()

    # build matrix context
    Bctx = MatrixFreeB(A, pyt_grad_op, pyt_op, actx, wave_number)

    # set up B as same size as A
    B.setSizes(*A.getSizes())

    B.setType(B.Type.PYTHON)
    B.setPythonContext(Bctx)
    B.setUp()
    # }}}

    # {{{ Create rhs

    # Remember f is \partial_n(true_sol)|_\Gamma
    # so we just need to compute \int_\Gamma\partial_n(true_sol) H(x-y)

    sigma = sym.make_sym_vector("sigma", ambient_dim)
    r"""
    ..math:

    x \in \Sigma

    grad_op(x) =
        \nabla(
            \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y)
        )
    """
    grad_op = pyt_inner_normal_sign * \
        sym.grad(ambient_dim, sym.S(HelmholtzKernel(ambient_dim),
                                    sym.n_dot(sigma),
                                    k=sym.var("k"), qbx_forced_limit=None))
    r"""
    ..math:

    x \in \Sigma

    op(x) =
        i \kappa \cdot
        \int_\Gamma(
            f(y) H_0^{(1)}(\kappa |x - y|)
        )d\gamma(y)
        )
    """
    op = 1j * sym.var("k") * pyt_inner_normal_sign * \
        sym.S(HelmholtzKernel(ambient_dim),
              sym.n_dot(sigma),
              k=sym.var("k"),
              qbx_forced_limit=None)

    rhs_grad_op = bind((qbx, target), grad_op)
    rhs_op = bind((qbx, target), op)

    # Transfer to meshmode
    metadata = {'quadrature_degree': 2 * fspace.ufl_element().degree()}
    dg_true_sol_grad = project(true_sol_grad_expr,
                               dgvfspace,
                               form_compiler_parameters=metadata)
    true_sol_grad_mm = meshmode_src_connection.from_firedrake(dg_true_sol_grad,
                                                              actx=actx)
    true_sol_grad_mm = src_bdy_connection(true_sol_grad_mm)
    # Apply the operations
    f_grad_convoluted_mm = rhs_grad_op(actx,
                                       sigma=true_sol_grad_mm,
                                       k=wave_number)
    f_convoluted_mm = rhs_op(actx, sigma=true_sol_grad_mm, k=wave_number)
    # Transfer function back to firedrake
    f_grad_convoluted = Function(vfspace)
    f_convoluted = Function(fspace)
    f_grad_convoluted.dat.data[:] = 0.0
    f_convoluted.dat.data[:] = 0.0

    for dim in range(f_grad_convoluted_mm.shape[0]):
        f_grad_convoluted.dat.data[target_indices,
                                   dim] = f_grad_convoluted_mm[dim].get()
    f_convoluted.dat.data[target_indices] = f_convoluted_mm.get()
    r"""
        \langle
            f, v
        \rangle_\Gamma
        + \langle
            i \kappa \cdot \int_\Gamma(
                f(y) H_0^{(1)}(\kappa |x - y|)
            )d\gamma(y), v
        \rangle_\Sigma
        - \langle
            n(x) \cdot \nabla(
                \int_\Gamma(
                    f(y) H_0^{(1)}(\kappa |x - y|)
                )d\gamma(y)
            ), v
        \rangle_\Sigma
    """
    rhs_form = inner(inner(true_sol_grad_expr, FacetNormal(mesh)),
                     v) * ds(scatterer_bdy_id, metadata=metadata) \
        + inner(f_convoluted, v) * ds(outer_bdy_id) \
        - inner(inner(f_grad_convoluted, FacetNormal(mesh)),
                v) * ds(outer_bdy_id)

    rhs = assemble(rhs_form)

    # {{{ set up a solver:
    solution = Function(fspace, name="Computed Solution")

    #       {{{ Used for preconditioning
    if 'gamma' in solver_parameters or 'beta' in solver_parameters:
        gamma = complex(solver_parameters.pop('gamma', 1.0))

        import cmath
        beta = complex(solver_parameters.pop('beta', cmath.sqrt(gamma)))

        p = inner(grad(u), grad(v)) * dx \
            - Constant(wave_number**2 * gamma) * inner(u, v) * dx \
            - Constant(1j * wave_number * beta) * inner(u, v) * ds(outer_bdy_id)
        P = assemble(p).M.handle

    else:
        P = A
    #       }}}

    # Set up options to contain solver parameters:
    ksp = PETSc.KSP().create()
    if solver_parameters['pc_type'] == 'pyamg':
        del solver_parameters['pc_type']  # We are using the AMG preconditioner

        pyamg_tol = solver_parameters.get('pyamg_tol', None)
        if pyamg_tol is not None:
            pyamg_tol = float(pyamg_tol)
        pyamg_maxiter = solver_parameters.get('pyamg_maxiter', None)
        if pyamg_maxiter is not None:
            pyamg_maxiter = int(pyamg_maxiter)
        ksp.setOperators(B)
        ksp.setUp()
        pc = ksp.pc
        pc.setType(pc.Type.PYTHON)
        pc.setPythonContext(
            AMGTransmissionPreconditioner(wave_number,
                                          fspace,
                                          A,
                                          tol=pyamg_tol,
                                          maxiter=pyamg_maxiter,
                                          use_plane_waves=True))
    # Otherwise use regular preconditioner
    else:
        ksp.setOperators(B, P)

    options_manager = OptionsManager(solver_parameters, options_prefix)
    options_manager.set_from_options(ksp)

    import petsc4py.PETSc
    petsc4py.PETSc.Sys.popErrorHandler()
    with rhs.dat.vec_ro as b:
        with solution.dat.vec as x:
            ksp.solve(b, x)
    # }}}

    return ksp, solution
Beispiel #11
0
def get_boundary_masks(mesh, key, finat_element):
    """Get masks for facet dofs.

    :arg mesh: The mesh to use.
    :arg key: Canonicalised entity_dofs (see :func:`entity_dofs_key`).
    :arg finat_element: The FInAT element.
    :returns: A dict mapping ``"topological"`` and ``"geometric"``
        keys to boundary nodes or ``None``.  If not None, the entry in
        the mask dict 3-tuple of a Section, an array of indices, and
        an array indicating which points in the Section correspond to
        the facets of the cell.  If section.getDof(p) is non-zero,
        then there are ndof basis functions topologically associated
        with points in the closure of
        point p (for "topological", ndof basis functions with non-zero
        support on points in the closure of p for "geometric").  The
        basis function indices are in the index array, starting at
        section.getOffset(p).
    """
    if not mesh.cell_set._extruded:
        return None
    masks = {}
    _, kind = key
    assert kind in {"cell", "interior_facet"}
    dim = finat_element.cell.get_spatial_dimension()
    ecd = finat_element.entity_closure_dofs()
    try:
        esd = finat_element.entity_support_dofs()
    except NotImplementedError:
        # 4-D cells
        esd = None
    # Number of entities on cell excepting the cell itself.
    chart = sum(map(len, ecd.values())) - 1
    closure_section = PETSc.Section().create(comm=PETSc.COMM_SELF)
    support_section = PETSc.Section().create(comm=PETSc.COMM_SELF)
    # Double up for interior facets.
    if kind == "cell":
        ncell = 1
    else:
        ncell = 2
    closure_section.setChart(0, ncell * chart)
    support_section.setChart(0, ncell * chart)
    closure_indices = []
    support_indices = []
    facet_points = []
    p = 0

    offset = finat_element.space_dimension()
    for cell in range(ncell):
        for ent in sorted(ecd.keys()):
            # Never need closure of cell
            if sum(ent) == dim:
                continue
            for key in sorted(ecd[ent].keys()):
                closure_section.setDof(p, len(ecd[ent][key]))
                vals = numpy.asarray(sorted(ecd[ent][key]), dtype=IntType)
                closure_indices.extend(vals + cell * offset)
                if esd is not None:
                    support_section.setDof(p, ncell * len(esd[ent][key]))
                    vals = numpy.asarray(sorted(esd[ent][key]), dtype=IntType)
                    support_indices.extend(vals + cell * offset)
                if sum(ent) == dim - 1:
                    facet_points.append(p)
                p += 1
    closure_section.setUp()
    support_section.setUp()
    closure_indices = numpy.asarray(closure_indices, dtype=IntType)
    support_indices = numpy.asarray(support_indices, dtype=IntType)
    facet_points = numpy.asarray(facet_points, dtype=IntType)
    masks["topological"] = (closure_section, closure_indices, facet_points)
    masks["geometric"] = (support_section, support_indices, facet_points)
    return masks
Beispiel #12
0
    def __init__(self, problem, **kwargs):
        r"""
        :arg problem: A :class:`NonlinearVariationalProblem` to solve.
        :kwarg nullspace: an optional :class:`.VectorSpaceBasis` (or
               :class:`.MixedVectorSpaceBasis`) spanning the null
               space of the operator.
        :kwarg transpose_nullspace: as for the nullspace, but used to
               make the right hand side consistent.
        :kwarg near_nullspace: as for the nullspace, but used to
               specify the near nullspace (for multigrid solvers).
        :kwarg solver_parameters: Solver parameters to pass to PETSc.
               This should be a dict mapping PETSc options to values.
        :kwarg appctx: A dictionary containing application context that
               is passed to the preconditioner if matrix-free.
        :kwarg options_prefix: an optional prefix used to distinguish
               PETSc options.  If not provided a unique prefix will be
               created.  Use this option if you want to pass options
               to the solver from the command line in addition to
               through the ``solver_parameters`` dict.
        :kwarg pre_jacobian_callback: A user-defined function that will
               be called immediately before Jacobian assembly. This can
               be used, for example, to update a coefficient function
               that has a complicated dependence on the unknown solution.
        :kwarg pre_function_callback: As above, but called immediately
               before residual assembly

        Example usage of the ``solver_parameters`` option: to set the
        nonlinear solver type to just use a linear solver, use

        .. code-block:: python

            {'snes_type': 'ksponly'}

        PETSc flag options (where the presence of the option means something) should
        be specified with ``None``.
        For example:

        .. code-block:: python

            {'snes_monitor': None}

        To use the ``pre_jacobian_callback`` or ``pre_function_callback``
        functionality, the user-defined function must accept the current
        solution as a petsc4py Vec. Example usage is given below:

        .. code-block:: python

            def update_diffusivity(current_solution):
                with cursol.dat.vec_wo as v:
                    current_solution.copy(v)
                solve(trial*test*dx == dot(grad(cursol), grad(test))*dx, diffusivity)

            solver = NonlinearVariationalSolver(problem,
                                                pre_jacobian_callback=update_diffusivity)

        """
        assert isinstance(problem, NonlinearVariationalProblem)

        parameters = kwargs.get("solver_parameters")
        if "parameters" in kwargs:
            raise TypeError("Use solver_parameters, not parameters")
        nullspace = kwargs.get("nullspace")
        nullspace_T = kwargs.get("transpose_nullspace")
        near_nullspace = kwargs.get("near_nullspace")
        options_prefix = kwargs.get("options_prefix")
        pre_j_callback = kwargs.get("pre_jacobian_callback")
        pre_f_callback = kwargs.get("pre_function_callback")

        super(NonlinearVariationalSolver,
              self).__init__(parameters, options_prefix)

        # Allow anything, interpret "matfree" as matrix_free.
        mat_type = self.parameters.get("mat_type")
        pmat_type = self.parameters.get("pmat_type")
        matfree = mat_type == "matfree"
        pmatfree = pmat_type == "matfree"

        appctx = kwargs.get("appctx")

        ctx = solving_utils._SNESContext(problem,
                                         mat_type=mat_type,
                                         pmat_type=pmat_type,
                                         appctx=appctx,
                                         pre_jacobian_callback=pre_j_callback,
                                         pre_function_callback=pre_f_callback,
                                         options_prefix=self.options_prefix)

        # No preconditioner by default for matrix-free
        if (problem.Jp is not None and pmatfree) or matfree:
            self.set_default_parameter("pc_type", "none")
        elif ctx.is_mixed:
            # Mixed problem, use jacobi pc if user has not supplied
            # one.
            self.set_default_parameter("pc_type", "jacobi")

        self.snes = PETSc.SNES().create(comm=problem.dm.comm)

        self._problem = problem

        self._ctx = ctx
        self._work = problem.u.dof_dset.layout_vec.duplicate()
        self.snes.setDM(problem.dm)

        ctx.set_function(self.snes)
        ctx.set_jacobian(self.snes)
        ctx.set_nullspace(nullspace,
                          problem.J.arguments()[0].function_space()._ises,
                          transpose=False,
                          near=False)
        ctx.set_nullspace(nullspace_T,
                          problem.J.arguments()[1].function_space()._ises,
                          transpose=True,
                          near=False)
        ctx.set_nullspace(near_nullspace,
                          problem.J.arguments()[0].function_space()._ises,
                          transpose=False,
                          near=True)
        ctx._nullspace = nullspace
        ctx._nullspace_T = nullspace_T
        ctx._near_nullspace = near_nullspace

        # Set from options now, so that people who want to noodle with
        # the snes object directly (mostly Patrick), can.  We need the
        # DM with an app context in place so that if the DM is active
        # on a subKSP the context is available.
        dm = self.snes.getDM()
        with dmhooks.appctx(dm, self._ctx):
            self.set_from_options(self.snes)

        # Used for custom grid transfer.
        self._transfer_operators = ()
        self._setup = False
Beispiel #13
0
    def initialize(self, pc):
        _, P = pc.getOperators()
        assert P.type == "python"
        context = P.getPythonContext()
        (self.J, self.bcs) = (context.a, context.row_bcs)

        test, trial = self.J.arguments()
        if test.function_space() != trial.function_space():
            raise NotImplementedError("test and trial spaces must be the same")

        Pk = test.function_space()
        element = Pk.ufl_element()
        shape = element.value_shape()
        mesh = Pk.ufl_domain()
        if len(shape) == 0:
            P1 = firedrake.FunctionSpace(mesh, "CG", 1)
        elif len(shape) == 2:
            P1 = firedrake.VectorFunctionSpace(mesh, "CG", 1, dim=shape[0])
        else:
            P1 = firedrake.TensorFunctionSpace(mesh,
                                               "CG",
                                               1,
                                               shape=shape,
                                               symmetry=element.symmetry())

        # TODO: A smarter low-order operator would also interpolate
        # any coefficients to the coarse space.
        mapper = ArgumentReplacer({
            test: firedrake.TestFunction(P1),
            trial: firedrake.TrialFunction(P1)
        })
        self.lo_J = map_integrands.map_integrand_dags(mapper, self.J)

        lo_bcs = []
        for bc in self.bcs:
            # Don't actually need the value, since it's only used for
            # killing parts of the restriction matrix.
            lo_bcs.append(
                firedrake.DirichletBC(P1,
                                      firedrake.zero(P1.shape),
                                      bc.sub_domain,
                                      method=bc.method))

        self.lo_bcs = tuple(lo_bcs)

        mat_type = PETSc.Options().getString(
            pc.getOptionsPrefix() + "lo_mat_type",
            firedrake.parameters["default_matrix_type"])
        self.lo_op = firedrake.assemble(self.lo_J,
                                        bcs=self.lo_bcs,
                                        mat_type=mat_type)
        self.lo_op.force_evaluation()
        A, P = pc.getOperators()
        nearnullsp = P.getNearNullSpace()
        if nearnullsp.handle != 0:
            # Actually have a near nullspace
            tmp = firedrake.Function(Pk)
            low = firedrake.Function(P1)
            vecs = []
            for vec in nearnullsp.getVecs():
                with tmp.dat.vec as v:
                    vec.copy(v)
                low.interpolate(tmp)
                with low.dat.vec_ro as v:
                    vecs.append(v.copy())
            nullsp = PETSc.NullSpace().create(vectors=vecs, comm=pc.comm)
            self.lo_op.petscmat.setNearNullSpace(nullsp)
        lo = PETSc.PC().create(comm=pc.comm)
        lo.incrementTabLevel(1, parent=pc)
        lo.setOperators(self.lo_op.petscmat, self.lo_op.petscmat)
        lo.setOptionsPrefix(pc.getOptionsPrefix() + "lo_")
        lo.setFromOptions()
        self.lo = lo
        self.restriction = restriction_matrix(Pk, P1, self.bcs, self.lo_bcs)

        self.work = self.lo_op.petscmat.createVecs()
        if len(self.bcs) > 0:
            bc_nodes = numpy.unique(
                numpy.concatenate([bc.nodes for bc in self.bcs]))
            bc_nodes = bc_nodes[bc_nodes < Pk.dof_dset.size]
            bc_iset = PETSc.IS().createBlock(numpy.prod(shape),
                                             bc_nodes,
                                             comm=PETSc.COMM_SELF)
            self.bc_indices = bc_iset.getIndices()
            bc_iset.destroy()
        else:
            self.bc_indices = numpy.empty(0, dtype=numpy.int32)
Beispiel #14
0
    def createSubMatrix(self, mat, row_is, col_is, target=None):
        if target is not None:
            # Repeat call, just return the matrix, since we don't
            # actually assemble in here.
            target.assemble()
            return target

        # These are the sets of ISes of which the the row and column
        # space consist.
        row_ises = self._y.function_space().dof_dset.field_ises
        col_ises = self._x.function_space().dof_dset.field_ises

        row_inds = find_sub_block(row_is, row_ises)
        if row_is == col_is and row_ises == col_ises:
            col_inds = row_inds
        else:
            col_inds = find_sub_block(col_is, col_ises)

        splitter = ExtractSubBlock()
        asub = splitter.split(self.a, argument_indices=(row_inds, col_inds))
        Wrow = asub.arguments()[0].function_space()
        Wcol = asub.arguments()[1].function_space()

        row_bcs = []
        col_bcs = []

        for bc in self.bcs:
            if isinstance(bc, DirichletBC):
                bc_temp = bc.reconstruct(field=row_inds,
                                         V=Wrow,
                                         g=bc.function_arg,
                                         sub_domain=bc.sub_domain,
                                         use_split=True)
            elif isinstance(bc, EquationBCSplit):
                bc_temp = bc.reconstruct(field=row_inds,
                                         V=Wrow,
                                         row_field=row_inds,
                                         col_field=col_inds,
                                         use_split=True)
            if bc_temp is not None:
                row_bcs.append(bc_temp)

        if Wrow == Wcol and row_inds == col_inds and self.bcs == self.bcs_col:
            col_bcs = row_bcs
        else:
            for bc in self.bcs_col:
                if isinstance(bc, DirichletBC):
                    bc_temp = bc.reconstruct(field=col_inds,
                                             V=Wcol,
                                             g=bc.function_arg,
                                             sub_domain=bc.sub_domain,
                                             use_split=True)
                elif isinstance(bc, EquationBCSplit):
                    bc_temp = bc.reconstruct(field=col_inds,
                                             V=Wcol,
                                             row_field=row_inds,
                                             col_field=col_inds,
                                             use_split=True)
                if bc_temp is not None:
                    col_bcs.append(bc_temp)

        submat_ctx = ImplicitMatrixContext(asub,
                                           row_bcs=row_bcs,
                                           col_bcs=col_bcs,
                                           fc_params=self.fc_params,
                                           appctx=self.appctx)
        submat_ctx.on_diag = self.on_diag and row_inds == col_inds
        submat = PETSc.Mat().create(comm=mat.comm)
        submat.setType("python")
        submat.setSizes((submat_ctx.row_sizes, submat_ctx.col_sizes),
                        bsize=submat_ctx.block_size)
        submat.setPythonContext(submat_ctx)
        submat.setUp()

        return submat
    # Define Weak form

    a =   ( (Ub*phi             - 1./(Ro*k2)*psi          + 1./Ro*Hb*vphi)*u )*dx \
        + ( ((dUb - psi/Ro)*phi + Ub*psi                  - 1./Ro*Hb*vphi.dx(0))*v )*dx \
        + ( 1./Ro*phi*eta       - 1./(Ro*k2)*psi*eta.dx(0) + vphi*Ub )*dx
    m = (phi * u + psi * v + vphi * eta) * dx

    # Build Petsc operators

    petsc_a = assemble(a, mat_type='aij', bcs=bc).M.handle
    petsc_m = assemble(m, mat_type='aij', bcs=bc).M.handle

    # Define Petsc options

    opts = PETSc.Options()
    opts.setValue("eps_gen_non_hermitian", None)
    opts.setValue("st_pc_factor_shift_type", "NONZERO")
    #opts.setValue("eps_type", "lapack")
    opts.setValue("eps_type", "krylovschur")
    opts.setValue("eps_largest_imaginary", None)
    opts.setValue("eps_tol", 1e-10)

    # Define Solver options

    es = SLEPc.EPS().create(comm=COMM_WORLD)
    es.setDimensions(num_eigenvalues)
    es.setOperators(petsc_a, petsc_m)
    es.setFromOptions()
    es.solve()
Beispiel #16
0
def assemble_mixed_mass_matrix(V_A, V_B):
    """
    Construct the mixed mass matrix of two function spaces,
    using the TrialFunction from V_A and the TestFunction
    from V_B.
    """

    if len(V_A) > 1 or len(V_B) > 1:
        raise NotImplementedError(
            "Sorry, only implemented for non-mixed spaces")

    if V_A.ufl_element().mapping() != "identity" or V_B.ufl_element().mapping(
    ) != "identity":
        msg = """
Sorry, only implemented for affine maps for now. To do non-affine, we'd need to
import much more of the assembly engine of UFL/TSFC/etc to do the assembly on
each supermesh cell.
"""
        raise NotImplementedError(msg)

    mesh_A = V_A.mesh()
    mesh_B = V_B.mesh()

    dim = mesh_A.geometric_dimension()
    assert dim == mesh_B.geometric_dimension()
    assert dim == mesh_A.topological_dimension()
    assert dim == mesh_B.topological_dimension()

    (mh_A, level_A) = get_level(mesh_A)
    (mh_B, level_B) = get_level(mesh_B)

    if mesh_A is mesh_B:

        def likely(cell_A):
            return [cell_A]
    else:
        if (mh_A is None or mh_B is None) or (mh_A is not mh_B):

            # No mesh hierarchy structure, call libsupermesh for
            # intersection finding
            intersections = intersection_finder(mesh_A, mesh_B)
            likely = intersections.__getitem__
        else:
            # We do have a mesh hierarchy, use it

            if abs(level_A - level_B) > 1:
                raise NotImplementedError(
                    "Only works for transferring between adjacent levels for now."
                )

            # What are the cells of B that (probably) intersect with a given cell in A?
            if level_A > level_B:
                cell_map = mh_A.fine_to_coarse_cells[level_A]

                def likely(cell_A):
                    return cell_map[cell_A]

            elif level_A < level_B:
                cell_map = mh_A.coarse_to_fine_cells[level_A]

                def likely(cell_A):
                    return cell_map[cell_A]

    assert V_A.value_size == V_B.value_size
    orig_value_size = V_A.value_size
    if V_A.value_size > 1:
        V_A = firedrake.FunctionSpace(mesh_A,
                                      V_A.ufl_element().sub_elements()[0])
    if V_B.value_size > 1:
        V_B = firedrake.FunctionSpace(mesh_B,
                                      V_B.ufl_element().sub_elements()[0])

    assert V_A.value_size == 1
    assert V_B.value_size == 1

    preallocator = PETSc.Mat().create(comm=mesh_A.comm)
    preallocator.setType(PETSc.Mat.Type.PREALLOCATOR)

    rset = V_B.dof_dset
    cset = V_A.dof_dset

    nrows = rset.layout_vec.getSizes()
    ncols = cset.layout_vec.getSizes()

    preallocator.setLGMap(rmap=rset.scalar_lgmap, cmap=cset.scalar_lgmap)
    preallocator.setSizes(size=(nrows, ncols), bsize=1)
    preallocator.setUp()

    zeros = numpy.zeros((V_B.cell_node_map().arity, V_A.cell_node_map().arity),
                        dtype=ScalarType)
    for cell_A, dofs_A in enumerate(V_A.cell_node_map().values):
        for cell_B in likely(cell_A):
            dofs_B = V_B.cell_node_map().values_with_halo[cell_B, :]
            preallocator.setValuesLocal(dofs_B, dofs_A, zeros)
    preallocator.assemble()

    dnnz, onnz = get_preallocation(preallocator, nrows[0])

    # Unroll from block to AIJ
    dnnz = dnnz * cset.cdim
    dnnz = numpy.repeat(dnnz, rset.cdim)
    onnz = onnz * cset.cdim
    onnz = numpy.repeat(onnz, cset.cdim)
    preallocator.destroy()

    assert V_A.value_size == V_B.value_size
    rdim = V_B.dof_dset.cdim
    cdim = V_A.dof_dset.cdim

    #
    # Preallocate M_AB.
    #
    mat = PETSc.Mat().create(comm=mesh_A.comm)
    mat.setType(PETSc.Mat.Type.AIJ)
    rsizes = tuple(n * rdim for n in nrows)
    csizes = tuple(c * cdim for c in ncols)
    mat.setSizes(size=(rsizes, csizes), bsize=(rdim, cdim))
    mat.setPreallocationNNZ((dnnz, onnz))
    mat.setLGMap(rmap=rset.lgmap, cmap=cset.lgmap)
    # TODO: Boundary conditions not handled.
    mat.setOption(mat.Option.IGNORE_OFF_PROC_ENTRIES, False)
    mat.setOption(mat.Option.NEW_NONZERO_ALLOCATION_ERR, True)
    mat.setOption(mat.Option.KEEP_NONZERO_PATTERN, True)
    mat.setOption(mat.Option.UNUSED_NONZERO_LOCATION_ERR, False)
    mat.setOption(mat.Option.IGNORE_ZERO_ENTRIES, True)
    mat.setUp()

    evaluate_kernel_A = compile_element(ufl.Coefficient(V_A),
                                        name="evaluate_kernel_A")
    evaluate_kernel_B = compile_element(ufl.Coefficient(V_B),
                                        name="evaluate_kernel_B")

    # We only need one of these since we assume that the two meshes both have CG1 coordinates
    to_reference_kernel = to_reference_coordinates(
        mesh_A.coordinates.ufl_element())

    if dim == 2:
        reference_mesh = UnitTriangleMesh(comm=COMM_SELF)
    else:
        reference_mesh = UnitTetrahedronMesh(comm=COMM_SELF)
    evaluate_kernel_S = compile_element(ufl.Coefficient(
        reference_mesh.coordinates.function_space()),
                                        name="evaluate_kernel_S")

    V_S_A = FunctionSpace(reference_mesh, V_A.ufl_element())
    V_S_B = FunctionSpace(reference_mesh, V_B.ufl_element())
    M_SS = assemble(inner(TrialFunction(V_S_A), TestFunction(V_S_B)) * dx)
    M_SS = M_SS.M.handle[:, :]
    node_locations_A = utils.physical_node_locations(
        V_S_A).dat.data_ro_with_halos
    node_locations_B = utils.physical_node_locations(
        V_S_B).dat.data_ro_with_halos
    num_nodes_A = node_locations_A.shape[0]
    num_nodes_B = node_locations_B.shape[0]

    to_reference_kernel = to_reference_coordinates(
        mesh_A.coordinates.ufl_element())

    supermesh_kernel_str = """
    #include "libsupermesh-c.h"
    #include <petsc.h>
    %(to_reference)s
    %(evaluate_S)s
    %(evaluate_A)s
    %(evaluate_B)s
#define complex_mode %(complex_mode)s

    #define PrintInfo(...) do { if (PetscLogPrintInfo) printf(__VA_ARGS__); } while (0)
    static void print_array(PetscScalar *arr, int d)
    {
        for(int j=0; j<d; j++)
            PrintInfo(stderr, "%%+.2f ", arr[j]);
    }
    static void print_coordinates(PetscScalar *simplex, int d)
    {
        for(int i=0; i<d+1; i++)
        {
            PrintInfo("\t");
            print_array(&simplex[d*i], d);
            PrintInfo("\\n");
        }
    }
#if complex_mode
    static void seperate_real_and_imag(PetscScalar *simplex, double *real_simplex, double *imag_simplex, int d)
    {
        for(int i=0; i<d+1; i++)
        {
            for(int j=0; j<d; j++)
            {
                real_simplex[d*i+j] = creal(simplex[d*i+j]);
                imag_simplex[d*i+j] = cimag(simplex[d*i+j]);
            }
        }
    }
    static void merge_back_to_simplex(PetscScalar* simplex, double* real_simplex, double* imag_simplex, int d)
    {
        print_coordinates(simplex,d);
        for(int i=0; i<d+1; i++)
        {
            for(int j=0; j<d; j++)
            {
                simplex[d*i+j] = real_simplex[d*i+j]+imag_simplex[d*i+j]*_Complex_I;
            }
        }
    }
#endif
    int supermesh_kernel(PetscScalar* simplex_A, PetscScalar* simplex_B, PetscScalar* simplices_C,  PetscScalar* nodes_A,  PetscScalar* nodes_B,  PetscScalar* M_SS, PetscScalar* outptr, int num_ele)
    {
#define d %(dim)s
#define num_nodes_A %(num_nodes_A)s
#define num_nodes_B %(num_nodes_B)s

        double simplex_ref_measure;
        PrintInfo("simplex_A coordinates\\n");
        print_coordinates(simplex_A, d);
        PrintInfo("simplex_B coordinates\\n");
        print_coordinates(simplex_B, d);
        int num_elements = num_ele;

        if (d == 2) simplex_ref_measure = 0.5;
        else if (d == 3) simplex_ref_measure = 1.0/6;

        PetscScalar R_AS[num_nodes_A][num_nodes_A];
        PetscScalar R_BS[num_nodes_B][num_nodes_B];
        PetscScalar coeffs_A[%(num_nodes_A)s] = {0.};
        PetscScalar coeffs_B[%(num_nodes_B)s] = {0.};

        PetscScalar reference_nodes_A[num_nodes_A][d];
        PetscScalar reference_nodes_B[num_nodes_B][d];

#if complex_mode
        double real_simplex_A[d*(d+1)];
        double imag_simplex_A[d*(d+1)];
        seperate_real_and_imag(simplex_A, real_simplex_A, imag_simplex_A, d);
        double real_simplex_B[d*(d+1)];
        double imag_simplex_B[d*(d+1)];
        seperate_real_and_imag(simplex_B, real_simplex_B, imag_simplex_B, d);

        double real_simplices_C[num_elements*d*(d+1)];
        double imag_simplices_C[num_elements*d*(d+1)];
        for (int ii=0; ii<num_elements*d*(d+1); ++ii) imag_simplices_C[ii] = 0.;

        %(libsupermesh_intersect_simplices)s(real_simplex_A, real_simplex_B, real_simplices_C, &num_elements);

        merge_back_to_simplex(simplex_A, real_simplex_A, imag_simplex_A, d);
        merge_back_to_simplex(simplex_B, real_simplex_B, imag_simplex_B, d);
        for(int s=0; s<num_elements; s++)
        {
            PetscScalar* simplex_C = &simplices_C[s * d * (d+1)];
            double* real_simplex_C = &real_simplices_C[s * d * (d+1)];
            double* imag_simplex_C = &imag_simplices_C[s * d * (d+1)];
            merge_back_to_simplex(simplex_C, real_simplex_C, imag_simplex_C, d);
        }
#else
        %(libsupermesh_intersect_simplices)s(simplex_A, simplex_B, simplices_C, &num_elements);
#endif
        PrintInfo("Supermesh consists of %%i elements\\n", num_elements);

        // would like to do this
        //PetscScalar MAB[%(num_nodes_A)s][%(num_nodes_B)s] = (PetscScalar (*)[%(num_nodes_B)s])outptr;
        // but have to do this instead because we don't grok C
        PetscScalar (*MAB)[num_nodes_A] = (PetscScalar (*)[num_nodes_A])outptr;
        PetscScalar (*MSS)[num_nodes_A] = (PetscScalar (*)[num_nodes_A])M_SS; // note the underscore

        for ( int i = 0; i < num_nodes_B; i++ ) {
            for (int j = 0; j < num_nodes_A; j++) {
                MAB[i][j] = 0.0;
            }
        }

        for(int s=0; s<num_elements; s++)
        {
            PetscScalar* simplex_S = &simplices_C[s * d * (d+1)];
            double simplex_S_measure;
#if complex_mode
            double real_simplex_S[d*(d+1)];
            double imag_simplex_S[d*(d+1)];
            seperate_real_and_imag(simplex_S, real_simplex_S, imag_simplex_S, d);

            %(libsupermesh_simplex_measure)s(real_simplex_S, &simplex_S_measure);

            merge_back_to_simplex(simplex_S, real_simplex_S, imag_simplex_S, d);
#else
            %(libsupermesh_simplex_measure)s(simplex_S, &simplex_S_measure);
#endif
            PrintInfo("simplex_S coordinates with measure %%f\\n", simplex_S_measure);
            print_coordinates(simplex_S, d);

            PrintInfo("Start mapping nodes for V_A\\n");
            PetscScalar physical_nodes_A[num_nodes_A][d];
            for(int n=0; n < num_nodes_A; n++) {
                PetscScalar* reference_node_location = &nodes_A[n*d];
                PetscScalar* physical_node_location = physical_nodes_A[n];
                for (int j=0; j < d; j++) physical_node_location[j] = 0.0;
                pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location);
                PrintInfo("\\tNode ");
                print_array(reference_node_location, d);
                PrintInfo(" mapped to ");
                print_array(physical_node_location, d);
                PrintInfo("\\n");
            }
            PrintInfo("Start mapping nodes for V_B\\n");
            PetscScalar physical_nodes_B[num_nodes_B][d];
            for(int n=0; n < num_nodes_B; n++) {
                PetscScalar* reference_node_location = &nodes_B[n*d];
                PetscScalar* physical_node_location = physical_nodes_B[n];
                for (int j=0; j < d; j++) physical_node_location[j] = 0.0;
                pyop2_kernel_evaluate_kernel_S(physical_node_location, simplex_S, reference_node_location);
                PrintInfo("\\tNode ");
                print_array(reference_node_location, d);
                PrintInfo(" mapped to ");
                print_array(physical_node_location, d);
                PrintInfo("\\n");
            }
            PrintInfo("==========================================================\\n");
            PrintInfo("Start pulling back dof from S into reference space for A.\\n");
            for(int n=0; n < num_nodes_A; n++) {
                for(int i=0; i<d; i++) reference_nodes_A[n][i] = 0.;
                to_reference_coords_kernel(reference_nodes_A[n], physical_nodes_A[n], simplex_A);
                PrintInfo("Pulling back ");
                print_array(physical_nodes_A[n], d);
                PrintInfo(" to ");
                print_array(reference_nodes_A[n], d);
                PrintInfo("\\n");
            }
            PrintInfo("Start pulling back dof from S into reference space for B.\\n");
            for(int n=0; n < num_nodes_B; n++) {
                for(int i=0; i<d; i++) reference_nodes_B[n][i] = 0.;
                to_reference_coords_kernel(reference_nodes_B[n], physical_nodes_B[n], simplex_B);
                PrintInfo("Pulling back ");
                print_array(physical_nodes_B[n], d);
                PrintInfo(" to ");
                print_array(reference_nodes_B[n], d);
                PrintInfo("\\n");
            }

            PrintInfo("Start evaluating basis functions of V_A at dofs for V_A on S\\n");
            for(int i=0; i<num_nodes_A; i++) {
                coeffs_A[i] = 1.;
                for(int j=0; j<num_nodes_A; j++) {
                    R_AS[i][j] = 0.;
                    pyop2_kernel_evaluate_kernel_A(&R_AS[i][j], coeffs_A, reference_nodes_A[j]);
                }
                print_array(R_AS[i], num_nodes_A);
                PrintInfo("\\n");
                coeffs_A[i] = 0.;
            }
            PrintInfo("Start evaluating basis functions of V_B at dofs for V_B on S\\n");
            for(int i=0; i<num_nodes_B; i++) {
                coeffs_B[i] = 1.;
                for(int j=0; j<num_nodes_B; j++) {
                    R_BS[i][j] = 0.;
                    pyop2_kernel_evaluate_kernel_B(&R_BS[i][j], coeffs_B, reference_nodes_B[j]);
                }
                print_array(R_BS[i], num_nodes_B);
                PrintInfo("\\n");
                coeffs_B[i] = 0.;
            }
            PrintInfo("Start doing the matmatmat mult\\n");

            for ( int i = 0; i < num_nodes_B; i++ ) {
                for (int j = 0; j < num_nodes_A; j++) {
                    for ( int k = 0; k < num_nodes_B; k++) {
                        for ( int l = 0; l < num_nodes_A; l++) {
                            MAB[i][j] += (simplex_S_measure/simplex_ref_measure) * R_BS[i][k] * MSS[k][l] * R_AS[j][l];
                        }
                    }
                }
            }
        }
        return num_elements;
    }
    """ % {
        "evaluate_S":
        str(evaluate_kernel_S),
        "evaluate_A":
        str(evaluate_kernel_A),
        "evaluate_B":
        str(evaluate_kernel_B),
        "to_reference":
        str(to_reference_kernel),
        "num_nodes_A":
        num_nodes_A,
        "num_nodes_B":
        num_nodes_B,
        "libsupermesh_simplex_measure":
        "libsupermesh_triangle_area"
        if dim == 2 else "libsupermesh_tetrahedron_volume",
        "libsupermesh_intersect_simplices":
        "libsupermesh_intersect_tris_real"
        if dim == 2 else "libsupermesh_intersect_tets_real",
        "dim":
        dim,
        "complex_mode":
        1 if complex_mode else 0
    }

    dirs = get_petsc_dir() + (sys.prefix, )
    includes = ["-I%s/include" % d for d in dirs]
    libs = ["-L%s/lib" % d for d in dirs]
    libs = libs + ["-Wl,-rpath,%s/lib" % d
                   for d in dirs] + ["-lpetsc", "-lsupermesh"]
    lib = load(supermesh_kernel_str,
               "c",
               "supermesh_kernel",
               cppargs=includes,
               ldargs=libs,
               argtypes=[
                   ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp,
                   ctypes.c_voidp, ctypes.c_voidp, ctypes.c_voidp,
                   ctypes.c_voidp
               ],
               restype=ctypes.c_int)

    ammm(V_A, V_B, likely, node_locations_A, node_locations_B, M_SS,
         ctypes.addressof(lib), mat)
    if orig_value_size == 1:
        return mat
    else:
        (lrows, grows), (lcols, gcols) = mat.getSizes()
        lrows *= orig_value_size
        grows *= orig_value_size
        lcols *= orig_value_size
        gcols *= orig_value_size
        size = ((lrows, grows), (lcols, gcols))
        context = BlockMatrix(mat, orig_value_size)
        blockmat = PETSc.Mat().createPython(size,
                                            context=context,
                                            comm=mat.comm)
        blockmat.setUp()
        return blockmat
Beispiel #17
0
 def print_at_exit(cls):
     """Print citations when exiting."""
     # We devolve to PETSc for actually printing citations.
     PETSc.Options()["citations"] = None
Beispiel #18
0
    def __init__(self,
                 A,
                 P=None,
                 solver_parameters=None,
                 nullspace=None,
                 transpose_nullspace=None,
                 near_nullspace=None,
                 options_prefix=None):
        """A linear solver for assembled systems (Ax = b).

        :arg A: a :class:`~.MatrixBase` (the operator).
        :arg P: an optional :class:`~.MatrixBase` to construct any
             preconditioner from; if none is supplied ``A`` is
             used to construct the preconditioner.
        :kwarg parameters: (optional) dict of solver parameters.
        :kwarg nullspace: an optional :class:`~.VectorSpaceBasis` (or
            :class:`~.MixedVectorSpaceBasis` spanning the null space
            of the operator.
        :kwarg transpose_nullspace: as for the nullspace, but used to
               make the right hand side consistent.
        :kwarg near_nullspace: as for the nullspace, but used to set
               the near nullpace.
        :kwarg options_prefix: an optional prefix used to distinguish
               PETSc options.  If not provided a unique prefix will be
               created.  Use this option if you want to pass options
               to the solver from the command line in addition to
               through the ``solver_parameters`` dict.

        .. note::

          Any boundary conditions for this solve *must* have been
          applied when assembling the operator.
        """
        if not isinstance(A, matrix.MatrixBase):
            raise TypeError("Provided operator is a '%s', not a MatrixBase" %
                            type(A).__name__)
        if P is not None and not isinstance(P, matrix.MatrixBase):
            raise TypeError(
                "Provided preconditioner is a '%s', not a MatrixBase" %
                type(P).__name__)

        self.A = A
        self.comm = A.comm
        self.P = P if P is not None else A

        # Set up parameters mixin
        super(LinearSolver, self).__init__(solver_parameters, options_prefix)

        self.A.petscmat.setOptionsPrefix(self.options_prefix)
        self.P.petscmat.setOptionsPrefix(self.options_prefix)

        # Set some defaults
        self.set_default_parameter("ksp_rtol", "1e-7")
        # If preconditioning matrix is matrix-free, then default to no
        # preconditioning.
        if isinstance(self.P, matrix.ImplicitMatrix):
            self.set_default_parameter("pc_type", "none")
        elif self.P.block_shape != (1, 1):
            # Otherwise, mixed problems default to jacobi.
            self.set_default_parameter("pc_type", "jacobi")

        self.ksp = PETSc.KSP().create(comm=self.comm)

        W = self.test_space
        # DM provides fieldsplits (but not operators)
        self.ksp.setDM(W.dm)
        self.ksp.setDMActive(False)

        if nullspace is not None:
            nullspace._apply(self.A)
            if P is not None:
                nullspace._apply(self.P)

        if transpose_nullspace is not None:
            transpose_nullspace._apply(self.A, transpose=True)
            if P is not None:
                transpose_nullspace._apply(self.P, transpose=True)

        if near_nullspace is not None:
            near_nullspace._apply(self.A, near=True)
            if P is not None:
                near_nullspace._apply(self.P, near=True)

        self.nullspace = nullspace
        self.transpose_nullspace = transpose_nullspace
        self.near_nullspace = near_nullspace
        # Operator setting must come after null space has been
        # applied
        # Force evaluation here
        self.A.force_evaluation()
        self.P.force_evaluation()
        self.ksp.setOperators(A=self.A.petscmat, P=self.P.petscmat)
        # Set from options now (we're not allowed to change parameters
        # anyway).
        self.set_from_options(self.ksp)
Beispiel #19
0
    def initialize(self, pc):
        from firedrake import TrialFunction, TestFunction, dx, \
            assemble, inner, grad, split, Constant, parameters
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        if pc.getType() != "python":
            raise ValueError("Expecting PC type python")
        prefix = pc.getOptionsPrefix() + "pcd_"

        # we assume P has things stuffed inside of it
        _, P = pc.getOperators()
        context = P.getPythonContext()

        test, trial = context.a.arguments()
        if test.function_space() != trial.function_space():
            raise ValueError("Pressure space test and trial space differ")

        Q = test.function_space()

        p = TrialFunction(Q)
        q = TestFunction(Q)

        mass = p * q * dx

        # Regularisation to avoid having to think about nullspaces.
        stiffness = inner(grad(p), grad(q)) * dx + Constant(1e-6) * p * q * dx

        opts = PETSc.Options()
        # we're inverting Mp and Kp, so default them to assembled.
        # Fp only needs its action, so default it to mat-free.
        # These can of course be overridden.
        # only Fp is referred to in update, so that's the only
        # one we stash.
        default = parameters["default_matrix_type"]
        Mp_mat_type = opts.getString(prefix + "Mp_mat_type", default)
        Kp_mat_type = opts.getString(prefix + "Kp_mat_type", default)
        self.Fp_mat_type = opts.getString(prefix + "Fp_mat_type", "matfree")

        Mp = assemble(mass,
                      form_compiler_parameters=context.fc_params,
                      mat_type=Mp_mat_type,
                      options_prefix=prefix + "Mp_")
        Kp = assemble(stiffness,
                      form_compiler_parameters=context.fc_params,
                      mat_type=Kp_mat_type,
                      options_prefix=prefix + "Kp_")

        Mp.force_evaluation()
        Kp.force_evaluation()

        # FIXME: Should we transfer nullspaces over.  I think not.

        Mksp = PETSc.KSP().create(comm=pc.comm)
        Mksp.incrementTabLevel(1, parent=pc)
        Mksp.setOptionsPrefix(prefix + "Mp_")
        Mksp.setOperators(Mp.petscmat)
        Mksp.setUp()
        Mksp.setFromOptions()
        self.Mksp = Mksp

        Kksp = PETSc.KSP().create(comm=pc.comm)
        Kksp.incrementTabLevel(1, parent=pc)
        Kksp.setOptionsPrefix(prefix + "Kp_")
        Kksp.setOperators(Kp.petscmat)
        Kksp.setUp()
        Kksp.setFromOptions()
        self.Kksp = Kksp

        state = context.appctx["state"]

        Re = context.appctx.get("Re", 1.0)

        velid = context.appctx["velocity_space"]

        u0 = split(state)[velid]
        fp = 1.0 / Re * inner(grad(p), grad(q)) * dx + inner(u0,
                                                             grad(p)) * q * dx

        self.Re = Re
        self.Fp = allocate_matrix(fp,
                                  form_compiler_parameters=context.fc_params,
                                  mat_type=self.Fp_mat_type,
                                  options_prefix=prefix + "Fp_")
        self._assemble_Fp = create_assembly_callable(
            fp,
            tensor=self.Fp,
            form_compiler_parameters=context.fc_params,
            mat_type=self.Fp_mat_type)
        self._assemble_Fp()
        self.Fp.force_evaluation()
        Fpmat = self.Fp.petscmat
        self.workspace = [Fpmat.createVecLeft() for i in (0, 1)]
Beispiel #20
0
    def __init__(self, problem, **kwargs):
        """
        Solve a :class:`NonlinearVariationalProblem` on a hierarchy of meshes.

        :arg problem: A :class:`NonlinearVariationalProblem` or
             iterable thereof (if specifying the problem on each level
             by hand).
        :kwarg nullspace: an optional :class:`.VectorSpaceBasis` (or
             :class:`MixedVectorSpaceBasis`) spanning the null space of the
             operator.
        :kwarg solver_parameters: Solver parameters to pass to PETSc.
            This should be a dict mapping PETSc options to values.
            PETSc flag options should be specified with `bool`
            values (:data:`True` for on, :data:`False` for off).
        :kwarg options_prefix: an optional prefix used to distinguish
               PETSc options.  If not provided a unique prefix will be
               created.  Use this option if you want to pass options
               to the solver from the command line in addition to
               through the :data:`solver_parameters` dict.

        .. note::

           This solver is set up for use with geometric multigrid,
           that is you can use :data:`"snes_type": "fas"` or
           :data:`"pc_type": "mg"` transparently.
        """
        # Do this first so __del__ doesn't barf horribly if we get an
        # error in __init__
        parameters, nullspace, options_prefix \
            = firedrake.solving_utils._extract_kwargs(**kwargs)

        if options_prefix is not None:
            self._opt_prefix = options_prefix
            self._auto_prefix = False
        else:
            self._opt_prefix = "firedrake_nlvsh_%d_" % NLVSHierarchy._id
            self._auto_prefix = True
            NLVSHierarchy._id += 1

        if isinstance(problem, firedrake.NonlinearVariationalProblem):
            # We just got a single problem so coarsen up the hierarchy
            problems = []
            while True:
                if problem:
                    problems.append(problem)
                else:
                    break
                problem = coarsen_problem(problem)
            problems.reverse()
        else:
            # User has provided list of problems
            problems = problem
        ctx = firedrake.solving_utils._SNESContext(problems)

        if nullspace is not None:
            raise NotImplementedError(
                "Coarsening nullspaces no yet implemented")
        snes = PETSc.SNES().create()

        snes.setDM(problems[-1].dm)
        self.problems = problems
        self.snes = snes
        self.ctx = ctx
        self.ctx.set_function(self.snes)
        self.ctx.set_jacobian(self.snes)

        self.snes.setOptionsPrefix(self._opt_prefix)

        # Allow command-line arguments to override dict parameters
        opts = PETSc.Options()
        for k, v in opts.getAll().iteritems():
            if k.startswith(self._opt_prefix):
                parameters[k[len(self._opt_prefix):]] = v

        self.parameters = parameters
Beispiel #21
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.ctx = P.getPythonContext()

        if not isinstance(self.ctx, ImplicitMatrixContext):
            raise ValueError(
                "The python context must be an ImplicitMatrixContext")

        test, trial = self.ctx.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement(
            [ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        shapes = (V[self.vidx].finat_element.space_dimension(),
                  np.prod(V[self.vidx].shape))
        domain = "{[i,j]: 0 <= i < %d and 0 <= j < %d}" % shapes
        instructions = """
        for i, j
            w[i,j] = w[i,j] + 1
        end
        """
        self.weight = Function(V[self.vidx])
        par_loop((domain, instructions),
                 ufl.dx, {"w": (self.weight, INC)},
                 is_loopy_kernel=True)

        instructions = """
        for i, j
            vec_out[i,j] = vec_out[i,j] + vec_in[i,j]/w[i,j]
        end
        """
        self.average_kernel = (domain, instructions)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.ctx.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        if mesh.cell_set._extruded:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_h +
                     gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_v)
        else:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS)

        # Here we deal with boundaries. If there are Neumann
        # conditions (which should be enforced strongly for
        # H(div)xL^2) then we need to add jump terms on the exterior
        # facets. If there are Dirichlet conditions (which should be
        # enforced weakly) then we need to zero out the trace
        # variables there as they are not active (otherwise the hybrid
        # problem is not well-posed).

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.ctx.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.ctx.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError(
                        "Dirichlet conditions for scalar variable not supported. Use a weak bc"
                    )
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError(
                        "Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(
                        as_tuple(subdom, numbers.Integral))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {
                "top", "bottom"
            }
            neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains

            integrand = gammar * ufl.dot(sigma, n)
            measures = []
            trace_subdomains = []
            if mesh.cell_set._extruded:
                ds = ufl.ds_v
                for subdomain in sorted(extruded_neumann_subdomains):
                    measures.append({
                        "top": ufl.ds_t,
                        "bottom": ufl.ds_b
                    }[subdomain])
                trace_subdomains.extend(
                    sorted({"top", "bottom"} - extruded_neumann_subdomains))
            else:
                ds = ufl.ds
            if "on_boundary" in neumann_subdomains:
                measures.append(ds)
            else:
                measures.extend((ds(sd) for sd in sorted(neumann_subdomains)))
                markers = [int(x) for x in mesh.exterior_facets.unique_markers]
                dirichlet_subdomains = set(markers) - neumann_subdomains
                trace_subdomains.extend(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand * measure

            trace_bcs = [
                DirichletBC(TraceSpace, Constant(0.0), subdomain)
                for subdomain in trace_subdomains
            ]

        else:
            # No bcs were provided, we assume weak Dirichlet conditions.
            # We zero out the contribution of the trace variables on
            # the exterior boundary. Extruded cells will have both
            # horizontal and vertical facets
            trace_subdomains = ["on_boundary"]
            if mesh.cell_set._extruded:
                trace_subdomains.extend(["bottom", "top"])
            trace_bcs = [
                DirichletBC(TraceSpace, Constant(0.0), subdomain)
                for subdomain in trace_subdomains
            ]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.ctx.fc_params)

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp,
                                 bcs=trace_bcs,
                                 form_compiler_parameters=self.ctx.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix)
        self._assemble_S = create_assembly_callable(
            schur_comp,
            tensor=self.S,
            bcs=trace_bcs,
            form_compiler_parameters=self.ctx.fc_params,
            mat_type=mat_type)

        with timed_region("HybridOperatorAssembly"):
            self._assemble_S()

        Smat = self.S.petscmat

        nullspace = self.ctx.appctx.get("trace_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(TraceSpace)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)
Beispiel #22
0
 def __del__(self):
     if self._auto_prefix and hasattr(self, '_opt_prefix'):
         opts = PETSc.Options()
         for k in self.parameters.iterkeys():
             del opts[self._opt_prefix + k]
         delattr(self, '_opt_prefix')
    def lgmap(self, V, bcs, lgmap=None):
        assert len(V) == 1, "lgmap should not be called on MixedFunctionSpace"
        V = V.topological
        if bcs is None or len(bcs) == 0:
            return lgmap or V.dof_dset.lgmap

        # Boundary condition list *must* be collectively ordered already.
        # Key is a sorted list of bc subdomain, bc method, bc component.
        bc_key = []
        for bc in bcs:
            fs = bc.function_space()
            while fs.component is not None and fs.parent is not None:
                fs = fs.parent
            if fs.topological != V:
                raise RuntimeError("DirichletBC defined on a different FunctionSpace!")
            bc_key.append(bc._cache_key)

        def key(a):
            tpl, *rest = a
            if len(tpl) == 1 and isinstance(tpl[0], str):
                # tpl = ("some_string", )
                return (True, tpl[0], (), tuple(rest))
            else:
                # Ex:
                # tpl = ((facet_dim, ((1,), (2,), (3,))),
                #        (edge_dim, ((1, 3), (1, 4))),
                #        (vert_dim, ((1, 3, 4), )))
                return (False, "", tpl, tuple(rest))

        bc_key = tuple(sorted(bc_key, key=key))
        node_set = V.node_set
        key = (node_set, V.value_size, lgmap is None, bc_key)
        try:
            return self.map_cache[key]
        except KeyError:
            pass
        unblocked = any(bc.function_space().component is not None for bc in bcs)
        if lgmap is None:
            lgmap = V.dof_dset.lgmap
            if unblocked:
                indices = lgmap.indices.copy()
                bsize = 1
            else:
                indices = lgmap.block_indices.copy()
                bsize = lgmap.getBlockSize()
                assert bsize == V.value_size
        else:
            # MatBlock case, LGMap is already unrolled.
            indices = lgmap.block_indices.copy()
            bsize = lgmap.getBlockSize()
            unblocked = True
        nodes = []
        for bc in bcs:
            if bc.function_space().component is not None:
                nodes.append(bc.nodes * V.value_size + bc.function_space().component)
            elif unblocked:
                tmp = bc.nodes * V.value_size
                for i in range(V.value_size):
                    nodes.append(tmp + i)
            else:
                nodes.append(bc.nodes)
        nodes = numpy.unique(numpy.concatenate(nodes))
        indices[nodes] = -1
        return self.map_cache.setdefault(key, PETSc.LGMap().create(indices, bsize=bsize, comm=lgmap.comm))
Beispiel #24
0
def create_interpolation(dmc, dmf):
    _, clvl = utils.get_level(dmc)
    _, flvl = utils.get_level(dmf)

    cctx = dmc.getAppCtx()
    fctx = dmf.getAppCtx()

    V_c = dmc.getAttr("__fs__")()
    V_f = dmf.getAttr("__fs__")()

    nrow = sum(x.dof_dset.size * x.dof_dset.cdim for x in V_f)
    ncol = sum(x.dof_dset.size * x.dof_dset.cdim for x in V_c)

    cfn = firedrake.Function(V_c)
    ffn = firedrake.Function(V_f)
    cbcs = cctx._problems[clvl].bcs
    fbcs = fctx._problems[flvl].bcs

    class Interpolation(object):
        def __init__(self, cfn, ffn, cbcs=None, fbcs=None):
            self.cfn = cfn
            self.ffn = ffn
            self.cbcs = cbcs or []
            self.fbcs = fbcs or []

        def mult(self, mat, x, y, inc=False):
            with self.cfn.dat.vec as v:
                x.copy(v)
            firedrake.prolong(self.cfn, self.ffn)
            for bc in self.fbcs:
                bc.zero(self.ffn)
            with self.ffn.dat.vec_ro as v:
                if inc:
                    y.axpy(1.0, v)
                else:
                    v.copy(y)

        def multAdd(self, mat, x, y, w):
            if y.handle == w.handle:
                self.mult(mat, x, w, inc=True)
            else:
                self.mult(mat, x, w)
                w.axpy(1.0, y)

        def multTranspose(self, mat, x, y, inc=False):
            with self.ffn.dat.vec as v:
                x.copy(v)
            firedrake.restrict(self.ffn, self.cfn)
            for bc in self.cbcs:
                bc.zero(self.cfn)
            with self.cfn.dat.vec_ro as v:
                if inc:
                    y.axpy(1.0, v)
                else:
                    v.copy(y)

        def multTransposeAdd(self, mat, x, y, w):
            if y.handle == w.handle:
                self.multTranspose(mat, x, w, inc=True)
            else:
                self.multTranspose(mat, x, w)
                w.axpy(1.0, y)

    ctx = Interpolation(cfn, ffn, cbcs, fbcs)
    mat = PETSc.Mat().create()
    mat.setSizes(((nrow, None), (ncol, None)))
    mat.setType(mat.Type.PYTHON)
    mat.setPythonContext(ctx)
    mat.setUp()
    return mat, None
Beispiel #25
0
def run_steady_turbine(**model_options):
    """
    Consider a simple test case with two turbines positioned in a channel. The mesh has been adapted
    with respect to fluid speed and so has strong anisotropy in the direction of flow.

    If the default SIPG parameter is used, this steady state problem fails to converge. However,
    using the automatic SIPG parameter functionality, it should converge.
    """

    # Load an anisotropic mesh from file
    plex = PETSc.DMPlex().create()
    abspath = os.path.realpath(__file__)
    plex.createFromFile(
        abspath.replace('test_anisotropic.py', 'anisotropic_plex.h5'))
    mesh2d = Mesh(plex)
    x, y = SpatialCoordinate(mesh2d)

    # Create steady state solver object
    solver_obj = solver2d.FlowSolver2d(mesh2d, Constant(40.0))
    options = solver_obj.options
    options.timestep = 20.0
    options.simulation_export_time = 20.0
    options.simulation_end_time = 18.0
    options.timestepper_type = 'SteadyState'
    options.timestepper_options.solver_parameters = {
        'mat_type': 'aij',
        'snes_type': 'newtonls',
        'snes_rtol': 1e-8,
        'snes_monitor': None,
        'pc_type': 'lu',
        'pc_factor_mat_solver_type': 'mumps',
    }
    options.output_directory = 'outputs'
    options.fields_to_export = ['uv_2d', 'elev_2d']
    options.use_grad_div_viscosity_term = False
    options.element_family = 'dg-dg'
    options.horizontal_viscosity = Constant(1.0)
    options.quadratic_drag_coefficient = Constant(0.0025)
    options.use_lax_friedrichs_velocity = True
    options.lax_friedrichs_velocity_scaling_factor = Constant(1.0)
    options.use_grad_depth_viscosity_term = False
    options.update(model_options)
    solver_obj.create_equations()

    # Apply boundary conditions
    solver_obj.bnd_functions['shallow_water'] = {
        1: {
            'uv': Constant([3.0, 0.0])
        },
        2: {
            'elev': Constant(0.0)
        },
        3: {
            'un': Constant(0.0)
        },
    }

    def bump(fs, locs, scale=1.0):
        """Scaled bump function for turbines."""
        i = 0
        for j in range(len(locs)):
            x0 = locs[j][0]
            y0 = locs[j][1]
            r = locs[j][2]
            expr1 = (x - x0) * (x - x0) + (y - y0) * (y - y0)
            expr2 = scale * exp(1 - 1 /
                                (1 - (x - x0) *
                                 (x - x0) / r**2)) * exp(1 - 1 /
                                                         (1 - (y - y0) *
                                                          (y - y0) / r**2))
            i += conditional(lt(expr1, r * r), expr2, 0)
        return i

    # Set up turbine array
    L = 1000.0  # domain length
    W = 300.0  # domain width
    D = 18.0  # turbine diameter
    A = pi * (D / 2)**2  # turbine area
    locs = [(L / 2 - 8 * D, W / 2, D / 2),
            (L / 2 + 8 * D, W / 2, D / 2)]  # turbine locations

    # NOTE: We include a correction to account for the fact that the thrust coefficient is based
    #       on an upstream velocity, whereas we are using a depth averaged at-the-turbine velocity
    #       (see Kramer and Piggott 2016, eq. (15)).
    correction = 4 / (1 + sqrt(1 - A / (40.0 * D)))**2
    scaling = len(locs) / assemble(
        bump(solver_obj.function_spaces.P1DG_2d, locs) * dx)
    farm_options = TidalTurbineFarmOptions()
    farm_options.turbine_density = bump(solver_obj.function_spaces.P1DG_2d,
                                        locs,
                                        scale=scaling)
    farm_options.turbine_options.diameter = D
    farm_options.turbine_options.thrust_coefficient = 0.8 * correction
    solver_obj.options.tidal_turbine_farms['everywhere'] = farm_options

    # Apply initial guess of inflow velocity and solve
    solver_obj.assign_initial_conditions(uv=Constant([3.0, 0.0]))
    solver_obj.iterate()
Beispiel #26
0
    def initialize(self, pc):

        from firedrake import TestFunction, parameters
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        from firedrake.interpolation import Interpolator
        from firedrake.solving_utils import _SNESContext
        from firedrake.matrix_free.operators import ImplicitMatrixContext

        _, P = pc.getOperators()
        appctx = self.get_appctx(pc)
        fcp = appctx.get("form_compiler_parameters")

        if pc.getType() != "python":
            raise ValueError("Expecting PC type python")

        ctx = dmhooks.get_appctx(pc.getDM())
        if ctx is None:
            raise ValueError("No context found.")
        if not isinstance(ctx, _SNESContext):
            raise ValueError("Don't know how to get form from %r", ctx)

        prefix = pc.getOptionsPrefix()
        options_prefix = prefix + self._prefix
        opts = PETSc.Options()

        # Handle the fine operator if type is python
        if P.getType() == "python":
            ictx = P.getPythonContext()
            if ictx is None:
                raise ValueError("No context found on matrix")
            if not isinstance(ictx, ImplicitMatrixContext):
                raise ValueError("Don't know how to get form from %r", ictx)

            fine_operator = ictx.a
            fine_bcs = ictx.row_bcs
            if fine_bcs != ictx.col_bcs:
                raise NotImplementedError("Row and column bcs must match")

            fine_mat_type = opts.getString(options_prefix + "mat_type",
                                           parameters["default_matrix_type"])
            self.fine_op = allocate_matrix(fine_operator,
                                           bcs=fine_bcs,
                                           form_compiler_parameters=fcp,
                                           mat_type=fine_mat_type,
                                           options_prefix=options_prefix)
            self._assemble_fine_op = create_assembly_callable(
                fine_operator,
                tensor=self.fine_op,
                bcs=fine_bcs,
                form_compiler_parameters=fcp,
                mat_type=fine_mat_type)
            self._assemble_fine_op()
            fine_petscmat = self.fine_op.petscmat
        else:
            fine_petscmat = P

        # Transfer fine operator null space
        fine_petscmat.setNullSpace(P.getNullSpace())
        fine_transpose_nullspace = P.getTransposeNullSpace()
        if fine_transpose_nullspace.handle != 0:
            fine_petscmat.setTransposeNullSpace(fine_transpose_nullspace)

        # Handle the coarse operator
        coarse_options_prefix = options_prefix + "mg_coarse"
        coarse_mat_type = opts.getString(coarse_options_prefix + "mat_type",
                                         parameters["default_matrix_type"])

        get_coarse_space = appctx.get("get_coarse_space", None)
        if not get_coarse_space:
            raise ValueError(
                "Need to provide a callback which provides the coarse space.")
        coarse_space = get_coarse_space()

        get_coarse_operator = appctx.get("get_coarse_operator", None)
        if not get_coarse_operator:
            raise ValueError(
                "Need to provide a callback which provides the coarse operator."
            )
        coarse_operator = get_coarse_operator()

        coarse_space_bcs = appctx.get("coarse_space_bcs", None)

        # These should be callbacks which return the relevant nullspaces
        get_coarse_nullspace = appctx.get("get_coarse_op_nullspace", None)
        get_coarse_transpose_nullspace = appctx.get(
            "get_coarse_op_transpose_nullspace", None)

        self.coarse_op = allocate_matrix(coarse_operator,
                                         bcs=coarse_space_bcs,
                                         form_compiler_parameters=fcp,
                                         mat_type=coarse_mat_type,
                                         options_prefix=coarse_options_prefix)
        self._assemble_coarse_op = create_assembly_callable(
            coarse_operator,
            tensor=self.coarse_op,
            bcs=coarse_space_bcs,
            form_compiler_parameters=fcp)
        self._assemble_coarse_op()
        coarse_opmat = self.coarse_op.petscmat

        # Set nullspace if provided
        if get_coarse_nullspace:
            nsp = get_coarse_nullspace()
            coarse_opmat.setNullSpace(nsp.nullspace(comm=pc.comm))

        if get_coarse_transpose_nullspace:
            tnsp = get_coarse_transpose_nullspace()
            coarse_opmat.setTransposeNullSpace(tnsp.nullspace(comm=pc.comm))

        interp_petscmat = appctx.get("interpolation_matrix", None)
        if interp_petscmat is None:
            # Create interpolation matrix from coarse space to fine space
            fine_space = ctx.J.arguments()[0].function_space()
            interpolator = Interpolator(TestFunction(coarse_space), fine_space)
            interpolation_matrix = interpolator.callable()
            interp_petscmat = interpolation_matrix.handle

        # We set up a PCMG object that uses the constructed interpolation
        # matrix to generate the restriction/prolongation operators.
        # This is a two-level multigrid preconditioner.
        pcmg = PETSc.PC().create(comm=pc.comm)
        pcmg.incrementTabLevel(1, parent=pc)

        pcmg.setType(pc.Type.MG)
        pcmg.setOptionsPrefix(options_prefix)
        pcmg.setMGLevels(2)
        pcmg.setMGCycleType(pc.MGCycleType.V)
        pcmg.setMGInterpolation(1, interp_petscmat)
        pcmg.setOperators(A=fine_petscmat, P=fine_petscmat)

        # Create new appctx
        self._ctx_ref = self.new_snes_ctx(pc, coarse_operator,
                                          coarse_space_bcs, coarse_mat_type,
                                          fcp)

        coarse_solver = pcmg.getMGCoarseSolve()
        coarse_solver.setOperators(A=coarse_opmat, P=coarse_opmat)
        # coarse space dm
        coarse_dm = coarse_space.dm
        coarse_solver.setDM(coarse_dm)
        coarse_solver.setDMActive(False)
        pcmg.setDM(coarse_dm)
        pcmg.setFromOptions()
        self.pc = pcmg
        self._dm = coarse_dm

        with dmhooks.add_hooks(coarse_dm,
                               self,
                               appctx=self._ctx_ref,
                               save=False):
            coarse_solver.setFromOptions()
Beispiel #27
0
    bytes = info["memory"]
    nz = info["nz_used"]
    return rows, cols, bytes, nz


first = True
workaround_flop_counting_bug = True

if workaround_flop_counting_bug:
    # Prior to c91eb2e, PyOP2 overcounted flops by this factor
    scaling = 3.0
else:
    scaling = 1.0


sizeof_int = PETSc.IntType().dtype.itemsize
sizeof_double = PETSc.ScalarType().dtype.itemsize


PETSc.Sys.Print("Int Type has %d bytes, Scalar Type has %d bytes" %
                (sizeof_int, sizeof_double))

def aij_matvec_bytes(rows, cols, nz, rbs=1, cbs=1):
    # Gropp et al. 2000
    if rbs == cbs and rbs != 1:
        pass
    else:
        rbs = 1
        cbs = 1
    return ((cols + rows)*sizeof_double  # Vec read/write
            + (rows / rbs)*sizeof_int    # Row pointer
Beispiel #28
0
    def __init__(self, Q, fixed_bids=[], extra_bcs=[], direct_solve=False):
        if isinstance(extra_bcs, fd.DirichletBC):
            extra_bcs = [extra_bcs]

        self.direct_solve = direct_solve
        self.fixed_bids = fixed_bids  # fixed parts of bdry
        self.params = self.get_params()  # solver parameters
        self.Q = Q
        """
        V: type fd.FunctionSpace
        I: type PETSc.Mat, interpolation matrix between V and  ControlSpace
        """
        (V, I_interp) = Q.get_space_for_inner()
        free_bids = list(V.mesh().topology.exterior_facets.unique_markers)
        self.free_bids = [int(i) for i in free_bids]  # np.int->int
        for bid in self.fixed_bids:
            self.free_bids.remove(bid)

        # Some weak forms have a nullspace. We import the nullspace if no
        # parts of the bdry are fixed (we assume that a DirichletBC is
        # sufficient to empty the nullspace).
        nsp = None
        if len(self.fixed_bids) == 0:
            nsp_functions = self.get_nullspace(V)
            if nsp_functions is not None:
                nsp = fd.VectorSpaceBasis(nsp_functions)
                nsp.orthonormalize()

        bcs = []
        # impose homogeneous Dirichlet bcs on bdry parts that are fixed.
        if len(self.fixed_bids) > 0:
            dim = V.value_size
            if dim == 2:
                zerovector = fd.Constant((0, 0))
            elif dim == 3:
                zerovector = fd.Constant((0, 0, 0))
            else:
                raise NotImplementedError
            bcs.append(fd.DirichletBC(V, zerovector, self.fixed_bids))

        if len(extra_bcs) > 0:
            bcs += extra_bcs

        if len(bcs) == 0:
            bcs = None

        a = self.get_weak_form(V)
        A = fd.assemble(a, mat_type='aij', bcs=bcs)
        ls = fd.LinearSolver(A,
                             solver_parameters=self.params,
                             nullspace=nsp,
                             transpose_nullspace=nsp)
        self.ls = ls
        self.A = A.petscmat
        self.interpolated = False

        # If the matrix I is passed, replace A with transpose(I)*A*I
        # and set up a ksp solver for self.riesz_map
        if I_interp is not None:
            self.interpolated = True
            ITAI = self.A.PtAP(I_interp)
            from firedrake.petsc import PETSc
            import numpy as np
            zero_rows = []

            # if there are zero-rows, replace them with rows that
            # have 1 on the diagonal entry
            for row in range(*ITAI.getOwnershipRange()):
                (cols, vals) = ITAI.getRow(row)
                valnorm = np.linalg.norm(vals)
                if valnorm < 1e-13:
                    zero_rows.append(row)
            for row in zero_rows:
                ITAI.setValue(row, row, 1.0)
            ITAI.assemble()

            # overwrite the self.A created by get_impl
            self.A = ITAI

            # create ksp solver for self.riesz_map
            Aksp = PETSc.KSP().create(comm=V.comm)
            Aksp.setOperators(ITAI)
            Aksp.setType("preonly")
            Aksp.pc.setType("cholesky")
            Aksp.pc.setFactorSolverType("mumps")
            Aksp.setFromOptions()
            Aksp.setUp()
            self.Aksp = Aksp
Beispiel #29
0
 def __init__(self, dm, section):
     super(Halo, self).__init__()
     # Use a DM to create the halo SFs
     self.dm = PETSc.DMShell().create(dm.comm)
     self.dm.setPointSF(dm.getPointSF())
     self.dm.setDefaultSection(section)
    def __init__(self, problem, **kwargs):
        """
        :arg problem: A :class:`NonlinearVariationalProblem` to solve.
        :kwarg nullspace: an optional :class:`.VectorSpaceBasis` (or
               :class:`.MixedVectorSpaceBasis`) spanning the null
               space of the operator.
        :kwarg solver_parameters: Solver parameters to pass to PETSc.
            This should be a dict mapping PETSc options to values.  For
            example, to set the nonlinear solver type to just use a linear
            solver:
        :kwarg options_prefix: an optional prefix used to distinguish
               PETSc options.  If not provided a unique prefix will be
               created.  Use this option if you want to pass options
               to the solver from the command line in addition to
               through the ``solver_parameters`` dict.

        .. code-block:: python

            {'snes_type': 'ksponly'}

        PETSc flag options should be specified with `bool` values. For example:

        .. code-block:: python

            {'snes_monitor': True}
        """
        parameters, nullspace, options_prefix = solving_utils._extract_kwargs(
            **kwargs)

        # Do this first so __del__ doesn't barf horribly if we get an
        # error in __init__
        if options_prefix is not None:
            self._opt_prefix = options_prefix
            self._auto_prefix = False
        else:
            self._opt_prefix = 'firedrake_snes_%d_' % NonlinearVariationalSolver._id
            self._auto_prefix = True
            NonlinearVariationalSolver._id += 1

        assert isinstance(problem, NonlinearVariationalProblem)

        ctx = solving_utils._SNESContext(problem)

        self.snes = PETSc.SNES().create()

        self.snes.setOptionsPrefix(self._opt_prefix)

        # Mixed problem, use jacobi pc if user has not supplied one.
        if ctx.is_mixed:
            parameters.setdefault('pc_type', 'jacobi')

        # Allow command-line arguments to override dict parameters
        opts = PETSc.Options()
        for k, v in opts.getAll().iteritems():
            if k.startswith(self._opt_prefix):
                parameters[k[len(self._opt_prefix):]] = v

        self._problem = problem

        self._ctx = ctx
        self.snes.setDM(problem.dm)

        ctx.set_function(self.snes)
        ctx.set_jacobian(self.snes)
        ctx.set_nullspace(nullspace,
                          problem.J.arguments()[0].function_space()._ises)

        self.parameters = parameters