def curl_curl(mesh, degree): cell = mesh.ufl_cell() if cell.cellname() in ['interval * interval', 'quadrilateral']: hcurl_element = FiniteElement('RTCE', cell, degree) elif cell.cellname() == 'quadrilateral * interval': hcurl_element = FiniteElement('NCE', cell, degree) V = FunctionSpace(mesh, hcurl_element) u = TrialFunction(V) v = TestFunction(V) return dot(curl(u), curl(v)) * dx
def dgls_form(self, problem, mesh, bcs_p): rho = problem.rho mu = problem.mu k = problem.k f = problem.f q, p = fire.TrialFunctions(self._W) w, v = fire.TestFunctions(self._W) n = fire.FacetNormal(mesh) h = fire.CellDiameter(mesh) # Stabilizing parameters has_mesh_characteristic_length = True delta_0 = fire.Constant(1) delta_1 = fire.Constant(-1 / 2) delta_2 = fire.Constant(1 / 2) delta_3 = fire.Constant(1 / 2) eta_p = fire.Constant(100) eta_q = fire.Constant(100) h_avg = (h("+") + h("-")) / 2.0 if has_mesh_characteristic_length: delta_2 = delta_2 * h * h delta_3 = delta_3 * h * h kappa = rho * k / mu inv_kappa = 1.0 / kappa # Classical mixed terms a = (dot(inv_kappa * q, w) - div(w) * p - delta_0 * v * div(q)) * dx L = -delta_0 * f * v * dx # DG terms a += jump(w, n) * avg(p) * dS - avg(v) * jump(q, n) * dS # Edge stabilizing terms a += (eta_q * h_avg) * avg(inv_kappa) * ( jump(q, n) * jump(w, n)) * dS + (eta_p / h_avg) * avg(kappa) * dot( jump(v, n), jump(p, n)) * dS # Add the contributions of the pressure boundary conditions to L for pboundary, iboundary in bcs_p: L -= pboundary * dot(w, n) * ds(iboundary) # Stabilizing terms a += (delta_1 * inner(kappa * (inv_kappa * q + grad(p)), delta_0 * inv_kappa * w + grad(v)) * dx) a += delta_2 * inv_kappa * div(q) * div(w) * dx a += delta_3 * inner(kappa * curl(inv_kappa * q), curl( inv_kappa * w)) * dx L += delta_2 * inv_kappa * f * div(w) * dx return a, L
def advection_term(self, q): if self.state.mesh.topological_dimension() == 3: # <w,curl(u) cross ubar + grad( u.ubar)> # =<curl(u),ubar cross w> - <div(w), u.ubar> # =<u,curl(ubar cross w)> - # <<u_upwind, [[n cross(ubar cross w)cross]]>> both = lambda u: 2 * avg(u) L = (inner(q, curl(cross(self.ubar, self.test))) * dx - inner(both(self.Upwind * q), both(cross(self.n, cross(self.ubar, self.test)))) * self.dS) else: if self.ibp == "once": L = (-inner( self.gradperp(inner(self.test, self.perp(self.ubar))), q) * dx - inner( jump(inner(self.test, self.perp(self.ubar)), self.n), self.perp_u_upwind(q)) * self.dS) else: L = ( (-inner(self.test, div(self.perp(q)) * self.perp(self.ubar))) * dx - inner(jump(inner(self.test, self.perp(self.ubar)), self.n), self.perp_u_upwind(q)) * self.dS + jump( inner(self.test, self.perp(self.ubar)) * self.perp(q), self.n) * self.dS) L -= 0.5 * div(self.test) * inner(q, self.ubar) * dx return L
def vector_invariant_form(state, test, q, ibp=IntegrateByParts.ONCE): Vu = state.spaces("HDiv") dS_ = (dS_v + dS_h) if Vu.extruded else dS ubar = Function(Vu) n = FacetNormal(state.mesh) Upwind = 0.5 * (sign(dot(ubar, n)) + 1) if state.mesh.topological_dimension() == 3: if ibp != IntegrateByParts.ONCE: raise NotImplementedError # <w,curl(u) cross ubar + grad( u.ubar)> # =<curl(u),ubar cross w> - <div(w), u.ubar> # =<u,curl(ubar cross w)> - # <<u_upwind, [[n cross(ubar cross w)cross]]>> both = lambda u: 2 * avg(u) L = (inner(q, curl(cross(ubar, test))) * dx - inner(both(Upwind * q), both(cross(n, cross(ubar, test)))) * dS_) else: perp = state.perp if state.on_sphere: outward_normals = CellNormal(state.mesh) perp_u_upwind = lambda q: Upwind('+') * cross( outward_normals('+'), q('+')) + Upwind('-') * cross( outward_normals('-'), q('-')) else: perp_u_upwind = lambda q: Upwind('+') * perp(q('+')) + Upwind( '-') * perp(q('-')) if ibp == IntegrateByParts.ONCE: L = (-inner(perp(grad(inner(test, perp(ubar)))), q) * dx - inner(jump(inner(test, perp(ubar)), n), perp_u_upwind(q)) * dS_) else: L = ((-inner(test, div(perp(q)) * perp(ubar))) * dx - inner(jump(inner(test, perp(ubar)), n), perp_u_upwind(q)) * dS_ + jump(inner(test, perp(ubar)) * perp(q), n) * dS_) L -= 0.5 * div(test) * inner(q, ubar) * dx form = transporting_velocity(L, ubar) return transport(form, TransportEquationType.vector_invariant)
def advection_term(self, q): n = FacetNormal(self.state.mesh) Upwind = 0.5 * (sign(dot(self.ubar, n)) + 1) if self.state.mesh.topological_dimension() == 3: # <w,curl(u) cross ubar + grad( u.ubar)> # =<curl(u),ubar cross w> - <div(w), u.ubar> # =<u,curl(ubar cross w)> - # <<u_upwind, [[n cross(ubar cross w)cross]]>> both = lambda u: 2 * avg(u) L = (inner(q, curl(cross(self.ubar, self.test))) * dx - inner(both(Upwind * q), both(cross(n, cross(self.ubar, self.test)))) * self.dS) else: perp = self.state.perp if self.state.on_sphere: outward_normals = CellNormal(self.state.mesh) perp_u_upwind = lambda q: Upwind('+') * cross( outward_normals('+'), q('+')) + Upwind('-') * cross( outward_normals('-'), q('-')) else: perp_u_upwind = lambda q: Upwind('+') * perp(q('+')) + Upwind( '-') * perp(q('-')) if self.ibp == IntegrateByParts.ONCE: L = (-inner(perp(grad(inner(self.test, perp(self.ubar)))), q) * dx - inner(jump(inner(self.test, perp(self.ubar)), n), perp_u_upwind(q)) * self.dS) else: L = ((-inner(self.test, div(perp(q)) * perp(self.ubar))) * dx - inner(jump(inner(self.test, perp(self.ubar)), n), perp_u_upwind(q)) * self.dS + jump(inner(self.test, perp(self.ubar)) * perp(q), n) * self.dS) L -= 0.5 * div(self.test) * inner(q, self.ubar) * dx return L
def sdhm_form(self, problem, mesh, bcs_p, bcs_u): rho = problem.rho mu = problem.mu k = problem.k f = problem.f q, p, lambda_h = fire.split(self.solution) w, v, mu_h = fire.TestFunctions(self._W) n = fire.FacetNormal(mesh) h = fire.CellDiameter(mesh) # Stabilizing parameters has_mesh_characteristic_length = True beta_0 = fire.Constant(1e-15) delta_0 = fire.Constant(1) delta_1 = fire.Constant(-1 / 2) delta_2 = fire.Constant(1 / 2) delta_3 = fire.Constant(1 / 2) # h_avg = (h('+') + h('-')) / 2. beta = beta_0 / h beta_avg = beta_0 / h("+") if has_mesh_characteristic_length: delta_2 = delta_2 * h * h delta_3 = delta_3 * h * h kappa = rho * k / mu inv_kappa = 1.0 / kappa # Classical mixed terms a = (dot(inv_kappa * q, w) - div(w) * p - delta_0 * v * div(q)) * dx L = -delta_0 * f * v * dx # Hybridization terms a += lambda_h("+") * dot(w, n)("+") * dS + mu_h("+") * dot(q, n)("+") * dS a += beta_avg * kappa("+") * (lambda_h("+") - p("+")) * (mu_h("+") - v("+")) * dS # Add the contributions of the pressure boundary conditions to L primal_bc_markers = list(mesh.exterior_facets.unique_markers) for pboundary, iboundary in bcs_p: primal_bc_markers.remove(iboundary) a += (pboundary * dot(w, n) + mu_h * dot(q, n)) * ds(iboundary) a += beta * kappa * (lambda_h - pboundary) * mu_h * ds(iboundary) unprescribed_primal_bc = primal_bc_markers for bc_marker in unprescribed_primal_bc: a += (lambda_h * dot(w, n) + mu_h * dot(q, n)) * ds(bc_marker) a += beta * kappa * lambda_h * mu_h * ds(bc_marker) # Add the (weak) contributions of the velocity boundary conditions to L for uboundary, iboundary, component in bcs_u: if component is not None: dim = mesh.geometric_dimension() bc_array = [] for _ in range(dim): bc_array.append(0.0) bc_array[component] = uboundary bc_as_vector = fire.Constant(bc_array) L += mu_h * dot(bc_as_vector, n) * ds(iboundary) else: L += mu_h * dot(uboundary, n) * ds(iboundary) # Stabilizing terms a += (delta_1 * inner(kappa * (inv_kappa * q + grad(p)), delta_0 * inv_kappa * w + grad(v)) * dx) a += delta_2 * inv_kappa * div(q) * div(w) * dx a += delta_3 * inner(kappa * curl(inv_kappa * q), curl( inv_kappa * w)) * dx L += delta_2 * inv_kappa * f * div(w) * dx return a, L
def cgls_form(self, problem, mesh, bcs_p): rho = problem.rho mu = problem.mu k = problem.k f = problem.f q, p = fire.TrialFunctions(self._W) w, v = fire.TestFunctions(self._W) n = fire.FacetNormal(mesh) # Stabilizing parameters h = fire.CellDiameter(mesh) has_mesh_characteristic_length = True delta_0 = fire.Constant(1) delta_1 = fire.Constant(-1 / 2) delta_2 = fire.Constant(1 / 2) delta_3 = fire.Constant(1 / 2) # Some good stabilizing methods that I use: # 1) CLGS (Correa and Loula method, it's a Galerkin Least-Squares residual formulation): # * delta_0 = 1 # * delta_1 = -1/2 # * delta_2 = 1/2 # * delta_3 = 1/2 # 2) CLGS (Div): # * delta_0 = 1 # * delta_1 = -1/2 # * delta_2 = 1/2 # * delta_3 = 0 # 3) Original Hughes's adjoint (variational multiscale) method (HVM): # * delta_0 = -1 # * delta_1 = 1/2 # * delta_2 = 0 # * delta_3 = 0 # 4) HVM (Div): # * delta_0 = -1 # * delta_1 = 1/2 # * delta_2 = 1/2 # * delta_3 = 0 # 5) Enhanced HVM (eHVM, this one is proposed by me. It was never published before): # * delta_0 = -1 # * delta_1 = 1/2 # * delta_2 = 1/2 # * delta_3 = 1/2 # I'm currently investigating these modifications in my thesis. They work good for DG methods. if has_mesh_characteristic_length: delta_2 = delta_2 * h * h delta_3 = delta_3 * h * h kappa = rho * k / mu inv_kappa = 1.0 / kappa # Classical mixed terms a = (dot(inv_kappa * q, w) - div(w) * p - delta_0 * v * div(q)) * dx L = -delta_0 * f * v * dx # Add the contributions of the pressure boundary conditions to L for pboundary, iboundary in bcs_p: L -= pboundary * dot(w, n) * ds(iboundary) # Stabilizing terms a += (delta_1 * inner(kappa * (inv_kappa * q + grad(p)), delta_0 * inv_kappa * w + grad(v)) * dx) a += delta_2 * inv_kappa * div(q) * div(w) * dx a += delta_3 * inner(kappa * curl(inv_kappa * q), curl( inv_kappa * w)) * dx L += delta_2 * inv_kappa * f * div(w) * dx return a, L
def __init__(self, state, V): super(EulerPoincareForm, self).__init__(state) dt = state.timestepping.dt w = TestFunction(V) u = TrialFunction(V) self.u0 = Function(V) ustar = 0.5*(self.u0 + u) n = FacetNormal(state.mesh) Upwind = 0.5*(sign(dot(self.ubar, n))+1) if state.mesh.geometric_dimension() == 3: if V.extruded: surface_measure = (dS_h + dS_v) else: surface_measure = dS # <w,curl(u) cross ubar + grad( u.ubar)> # =<curl(u),ubar cross w> - <div(w), u.ubar> # =<u,curl(ubar cross w)> - # <<u_upwind, [[n cross(ubar cross w)cross]]>> both = lambda u: 2*avg(u) Eqn = ( inner(w, u-self.u0)*dx + dt*inner(ustar, curl(cross(self.ubar, w)))*dx - dt*inner(both(Upwind*ustar), both(cross(n, cross(self.ubar, w))))*surface_measure - dt*div(w)*inner(ustar, self.ubar)*dx ) # define surface measure and terms involving perp differently # for slice (i.e. if V.extruded is True) and shallow water # (V.extruded is False) else: if V.extruded: surface_measure = (dS_h + dS_v) perp = lambda u: as_vector([-u[1], u[0]]) perp_u_upwind = Upwind('+')*perp(ustar('+')) + Upwind('-')*perp(ustar('-')) else: surface_measure = dS outward_normals = CellNormal(state.mesh) perp = lambda u: cross(outward_normals, u) perp_u_upwind = Upwind('+')*cross(outward_normals('+'),ustar('+')) + Upwind('-')*cross(outward_normals('-'),ustar('-')) Eqn = ( (inner(w, u-self.u0) - dt*inner(w, div(perp(ustar))*perp(self.ubar)) - dt*div(w)*inner(ustar, self.ubar))*dx - dt*inner(jump(inner(w, perp(self.ubar)), n), perp_u_upwind)*surface_measure + dt*jump(inner(w, perp(self.ubar))*perp(ustar), n)*surface_measure ) a = lhs(Eqn) L = rhs(Eqn) self.u1 = Function(V) uproblem = LinearVariationalProblem(a, L, self.u1) self.usolver = LinearVariationalSolver(uproblem, options_prefix='EPAdvection')