Beispiel #1
0
def _getFisxDetector(fitConfiguration, attenuatorsDetector=None):
    distance = fitConfiguration["concentrations"]["distance"]
    area = fitConfiguration["concentrations"]["area"]
    detectorMaterial = fitConfiguration["detector"]["detele"]

    if attenuatorsDetector is None:
        # user is not interested on accounting for detection efficiency
        if fitConfiguration["fit"]["escapeflag"]:
            # but wants to account for escape peaks
            # we can forget about efficiency but not about detector composition
            # assign "infinite" efficiency
            density = 0.0
            thickness = 0.0
            fisxDetector = Detector(detectorMaterial,
                                    density=density,
                                    thickness=thickness)
        else:
            # user is not interested on considering the escape peaks
            fisxDetector = None
    else:
        # make sure information is consistent
        if attenuatorsDetector[0] not in [
                detectorMaterial, detectorMaterial + "1"
        ]:
            print("%s not equal to %s" %
                  (attenuatorsDetector[0], detectorMaterial))
            msg = "Inconsistent detector material between DETECTOR and ATTENUATORS tab"
            msg += "\n%s not equal to %s" % (attenuatorsDetector[0],
                                             detectorMaterial)
            raise ValueError(msg)
        if len(attenuatorsDetector) == 3:
            fisxDetector = Detector(detectorMaterial,
                                    density=attenuatorsDetector[1],
                                    thickness=attenuatorsDetector[2])
        else:
            fisxDetector = Detector(detectorMaterial,
                                    density=attenuatorsDetector[1],
                                    thickness=attenuatorsDetector[2],
                                    funny=attenuatorsDetector[3])
        fisxDetector.setActiveArea(area)
        fisxDetector.setDistance(distance)
    if fisxDetector is not None:
        nThreshold = fitConfiguration["detector"]["nthreshold"]
        fisxDetector.setMaximumNumberOfEscapePeaks(nThreshold)
    return fisxDetector
Beispiel #2
0
def _getFisxDetector(fitConfiguration, attenuatorsDetector=None):
    distance = fitConfiguration["concentrations"]["distance"]
    area = fitConfiguration["concentrations"]["area"]
    detectorMaterial = fitConfiguration["detector"]["detele"]

    if attenuatorsDetector is None:
        # user is not interested on accounting for detection efficiency
        if fitConfiguration["fit"]["escapeflag"]:
            # but wants to account for escape peaks
            # we can forget about efficiency but not about detector composition
            # assign "infinite" efficiency
            density = 0.0
            thickness = 0.0
            fisxDetector = Detector(detectorMaterial,
                                    density=density,
                                    thickness=thickness)
        else:
            # user is not interested on considering the escape peaks
            fisxDetector = None
    else:
        # make sure information is consistent
        if attenuatorsDetector[0] not in [detectorMaterial, detectorMaterial+"1"]:
            _logger.warning("%s not equal to %s",
                            attenuatorsDetector[0], detectorMaterial)
            msg = "Inconsistent detector material between DETECTOR and ATTENUATORS tab"
            msg += "\n%s not equal to %s" % (attenuatorsDetector[0], detectorMaterial)
            raise ValueError(msg)
        if len(attenuatorsDetector) == 3:
            fisxDetector = Detector(detectorMaterial,
                                density=attenuatorsDetector[1],
                                thickness=attenuatorsDetector[2])
        else:
            fisxDetector = Detector(detectorMaterial,
                                density=attenuatorsDetector[1],
                                thickness=attenuatorsDetector[2],
                                funny=attenuatorsDetector[3])
        fisxDetector.setActiveArea(area)
        fisxDetector.setDistance(distance)
    if fisxDetector is not None:
        nThreshold = fitConfiguration["detector"]["nthreshold"]
        fisxDetector.setMaximumNumberOfEscapePeaks(nThreshold)
    return fisxDetector
Beispiel #3
0
def _getDetector(webConfiguration):
    # Detector is described as a list [material, density, thickness]
    # Translation dictionnary
    Thickness = "thickness"
    Density = "density"
    Material = "material"
    Area = "area"
    Distance = "distance"
    material = webConfiguration["detector"].get(Material, None)
    if material is None:
        # No detector
        return None
    else:
        density = float(webConfiguration["detector"][Density])
        thickness = float(webConfiguration["detector"][Thickness])
        area = float(webConfiguration["detector"][Area])
        distance = float(webConfiguration["detector"][Distance])
        detectorInstance = Detector(material, density, thickness)
        detectorInstance.setActiveArea(area)
        detectorInstance.setDistance(distance)
    return detectorInstance
Beispiel #4
0
    def testXRFResults(self):
        from fisx import Elements
        from fisx import Material
        from fisx import Detector
        from fisx import XRF

        elementsInstance = Elements()
        elementsInstance.initializeAsPyMca()
        # After the slow initialization (to be made once), the rest is fairly fast.
        xrf = XRF()
        xrf.setBeam(
            16.0)  # set incident beam as a single photon energy of 16 keV
        xrf.setBeamFilters([["Al1", 2.72, 0.11, 1.0]])  # Incident beam filters
        # Steel composition of Schoonjans et al, 2012 used to generate table I
        steel = {
            "C": 0.0445,
            "N": 0.04,
            "Si": 0.5093,
            "P": 0.02,
            "S": 0.0175,
            "V": 0.05,
            "Cr": 18.37,
            "Mn": 1.619,
            "Fe":
            64.314,  # calculated by subtracting the sum of all other elements
            "Co": 0.109,
            "Ni": 12.35,
            "Cu": 0.175,
            "As": 0.010670,
            "Mo": 2.26,
            "W": 0.11,
            "Pb": 0.001
        }
        SRM_1155 = Material("SRM_1155", 1.0, 1.0)
        SRM_1155.setComposition(steel)
        elementsInstance.addMaterial(SRM_1155)
        xrf.setSample([["SRM_1155", 1.0,
                        1.0]])  # Sample, density and thickness
        xrf.setGeometry(45., 45.)  # Incident and fluorescent beam angles
        detector = Detector("Si1", 2.33,
                            0.035)  # Detector Material, density, thickness
        detector.setActiveArea(0.50)  # Area and distance in consistent units
        detector.setDistance(2.1)  # expected cm2 and cm.
        xrf.setDetector(detector)
        Air = Material("Air", 0.0012048, 1.0)
        Air.setCompositionFromLists(
            ["C1", "N1", "O1", "Ar1", "Kr1"],
            [0.0012048, 0.75527, 0.23178, 0.012827, 3.2e-06])
        elementsInstance.addMaterial(Air)
        xrf.setAttenuators([["Air", 0.0012048, 5.0, 1.0],
                            ["Be1", 1.848, 0.002, 1.0]])  # Attenuators
        fluo = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"],
                                             elementsInstance,
                                             secondary=2,
                                             useMassFractions=1)
        print(
            "\nElement   Peak          Energy       Rate      Secondary  Tertiary"
        )
        for key in fluo:
            for layer in fluo[key]:
                peakList = list(fluo[key][layer].keys())
                peakList.sort()
                for peak in peakList:
                    # energy of the peak
                    energy = fluo[key][layer][peak]["energy"]
                    # expected measured rate
                    rate = fluo[key][layer][peak]["rate"]
                    # primary photons (no attenuation and no detector considered)
                    primary = fluo[key][layer][peak]["primary"]
                    # secondary photons (no attenuation and no detector considered)
                    secondary = fluo[key][layer][peak]["secondary"]
                    # tertiary photons (no attenuation and no detector considered)
                    tertiary = fluo[key][layer][peak].get("tertiary", 0.0)
                    # correction due to secondary excitation
                    enhancement2 = (primary + secondary) / primary
                    enhancement3 = (primary + secondary + tertiary) / primary
                    print("%s   %s    %.4f     %.3g     %.5g    %.5g" % \
                                       (key, peak + (13 - len(peak)) * " ", energy,
                                       rate, enhancement2, enhancement3))
                    # compare against expected values from Schoonjans et al.
                    testXMI = True
                    if (key == "Cr K") and peak.startswith("KL3"):
                        second = 1.626
                        third = 1.671
                    elif (key == "Cr K") and peak.startswith("KM3"):
                        second = 1.646
                        third = 1.694
                    elif (key == "Fe K") and peak.startswith("KL3"):
                        second = 1.063
                        third = 1.064
                    elif (key == "Fe K") and peak.startswith("KL3"):
                        second = 1.065
                        third = 1.066
                    else:
                        testXMI = False
                    if testXMI:
                        discrepancy = 100 * (abs(second - enhancement2) /
                                             second)
                        self.assertTrue(discrepancy < 1.5,
                            "%s %s secondary discrepancy = %.1f %%" % \
                            (key, peak, discrepancy))
                        discrepancy = 100 * (abs(third - enhancement3) / third)
                        self.assertTrue(discrepancy < 1.5,
                            "%s %s tertiary discrepancy = %.1f %%" % \
                            (key, peak, discrepancy))
Beispiel #5
0
    def testXRFResults(self):
        from fisx import Elements
        from fisx import Material
        from fisx import Detector
        from fisx import XRF

        elementsInstance = Elements()
        elementsInstance.initializeAsPyMca()
        # After the slow initialization (to be made once), the rest is fairly fast.
        xrf = XRF()
        xrf.setBeam(16.0) # set incident beam as a single photon energy of 16 keV
        xrf.setBeamFilters([["Al1", 2.72, 0.11, 1.0]]) # Incident beam filters
        # Steel composition of Schoonjans et al, 2012 used to generate table I
        steel = {"C":  0.0445,
                 "N":  0.04,
                 "Si": 0.5093,
                 "P":  0.02,
                 "S":  0.0175,
                 "V":  0.05,
                 "Cr":18.37,
                 "Mn": 1.619,
                 "Fe":64.314, # calculated by subtracting the sum of all other elements
                 "Co": 0.109,
                 "Ni":12.35,
                 "Cu": 0.175,
                 "As": 0.010670,
                 "Mo": 2.26,
                 "W":  0.11,
                 "Pb": 0.001}
        SRM_1155 = Material("SRM_1155", 1.0, 1.0)
        SRM_1155.setComposition(steel)
        elementsInstance.addMaterial(SRM_1155)
        xrf.setSample([["SRM_1155", 1.0, 1.0]]) # Sample, density and thickness
        xrf.setGeometry(45., 45.)               # Incident and fluorescent beam angles
        detector = Detector("Si1", 2.33, 0.035) # Detector Material, density, thickness
        detector.setActiveArea(0.50)            # Area and distance in consistent units
        detector.setDistance(2.1)               # expected cm2 and cm.
        xrf.setDetector(detector)
        Air = Material("Air", 0.0012048, 1.0)
        Air.setCompositionFromLists(["C1", "N1", "O1", "Ar1", "Kr1"],
                                    [0.0012048, 0.75527, 0.23178, 0.012827, 3.2e-06])
        elementsInstance.addMaterial(Air)
        xrf.setAttenuators([["Air", 0.0012048, 5.0, 1.0],
                            ["Be1", 1.848, 0.002, 1.0]]) # Attenuators
        fluo = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"],
                                             elementsInstance,
                                             secondary=2,
                                             useMassFractions=1)
        print("\nElement   Peak          Energy       Rate      Secondary  Tertiary")
        for key in fluo:
            for layer in fluo[key]:
                peakList = list(fluo[key][layer].keys())
                peakList.sort()
                for peak in peakList:
                    # energy of the peak
                    energy = fluo[key][layer][peak]["energy"]
                    # expected measured rate
                    rate = fluo[key][layer][peak]["rate"]
                    # primary photons (no attenuation and no detector considered)
                    primary = fluo[key][layer][peak]["primary"]
                    # secondary photons (no attenuation and no detector considered)
                    secondary = fluo[key][layer][peak]["secondary"]
                    # tertiary photons (no attenuation and no detector considered)
                    tertiary = fluo[key][layer][peak].get("tertiary", 0.0)
                    # correction due to secondary excitation
                    enhancement2 = (primary + secondary) / primary
                    enhancement3 = (primary + secondary + tertiary) / primary
                    print("%s   %s    %.4f     %.3g     %.5g    %.5g" % \
                                       (key, peak + (13 - len(peak)) * " ", energy,
                                       rate, enhancement2, enhancement3))
                    # compare against expected values from Schoonjans et al.
                    testXMI = True
                    if (key == "Cr K") and peak.startswith("KL3"):
                        second = 1.626
                        third = 1.671
                    elif (key == "Cr K") and peak.startswith("KM3"):
                        second = 1.646
                        third = 1.694
                    elif (key == "Fe K") and peak.startswith("KL3"):
                        second = 1.063
                        third = 1.064
                    elif (key == "Fe K") and peak.startswith("KL3"):
                        second = 1.065
                        third = 1.066
                    else:
                        testXMI = False
                    if testXMI:
                        discrepancy = 100 * (abs(second-enhancement2)/second)
                        self.assertTrue(discrepancy < 1.5,
                            "%s %s secondary discrepancy = %.1f %%" % \
                            (key, peak, discrepancy))
                        discrepancy = 100 * (abs(third-enhancement3)/third)
                        self.assertTrue(discrepancy < 1.5,
                            "%s %s tertiary discrepancy = %.1f %%" % \
                            (key, peak, discrepancy))