Beispiel #1
0
    def get_par(self, step, dep=[]):

        #--current value must be within min and max
        self.checklimits()

        #--initialize resman
        self.resman = RESMAN(self.nworkers)
        self.parman = self.resman.parman

        #--setups
        guess = self.get_guess(dep)
        bounds = self.get_bounds()
        self.set_counters()
        self.parman.set_new_params(guess, initial=True)

        #--run fit
        fit = least_squares(self.get_residuals,
                            guess,
                            bounds=bounds,
                            method='trf',
                            ftol=conf['ftol'])

        #--generate summary. It will update system with the final results
        self.gen_summary(step, fit.x)

        #--close resman
        self.resman.shutdown()

        return fit.x
Beispiel #2
0
def collect_exp_data(wdir):

    load_config('%s/input.py'%wdir)
    conf['bootstrap']=False
    istep=core.get_istep()
    core.mod_conf(istep) #--set conf as specified in istep   

    resman=RESMAN(nworkers=1,parallel=False,datasets=True)

    obsres={}
    if 'idis'   in conf['datasets'] : obsres['idis']   = resman.idisres
    if 'pidis'  in conf['datasets'] : obsres['pidis']  = resman.pidisres
    if 'sidis'  in conf['datasets'] : obsres['sidis']  = resman.sidisres
    if 'psidis' in conf['datasets'] : obsres['psidis'] = resman.psidisres
    if 'dy'     in conf['datasets'] : obsres['dy']     = resman.dyres
    if 'sia'    in conf['datasets'] : obsres['sia']    = resman.siares
   

    print('\ncollecting exp data using the setup as in %s\n'%wdir)

    data={} 
    for reaction in obsres:
        tabs={}
        for idx in obsres[reaction].tabs:
            tabs[idx]={}
            tabs[idx]['value']=obsres[reaction].tabs[idx]['value']
            tabs[idx]['alpha']=obsres[reaction].tabs[idx]['alpha']
        data[reaction]=tabs

    save(data,'%s/expdata.dat'%(wdir))

    #--close resman
    resman.shutdown()
Beispiel #3
0
def gen_samples(wdir,nsamples=100,nsize=10):

    load_config('%s/input.py'%wdir)
    conf['bootstrap']=False
    istep=core.get_istep()
    core.mod_conf(istep) #--set conf as specified in istep   

    resman=RESMAN(nworkers=5,parallel=True,datasets=True)
    parman=resman.parman
    order=parman.order

    obsres={}
    if 'idis'   in conf['datasets'] : obsres['idis']   = resman.idisres
    if 'pidis'  in conf['datasets'] : obsres['pidis']  = resman.pidisres
    if 'sidis'  in conf['datasets'] : obsres['sidis']  = resman.sidisres
    if 'psidis' in conf['datasets'] : obsres['psidis'] = resman.psidisres
    if 'dy'     in conf['datasets'] : obsres['dy']     = resman.dyres
    if 'sia'    in conf['datasets'] : obsres['sia']    = resman.siares
   

    print('\ngen ml samples using the setup as in %s\n'%wdir)

    checkdir('%s/mlsamples'%wdir)

    data=gen_dataframe(parman.order,obsres,nsize)

    for _ in range(nsamples):
        lprint('progress: %d/%d'%(_,nsamples))
        par=parman.gen_flat(setup=True)
        res,rres,nres=resman.get_residuals(par)

        #--fill dataframe
        i=data['size']
        data['params'][i]=par
        for reaction in obsres:
            for idx in data['reactions'][reaction]:
                prediction=copy.copy(obsres[reaction].tabs[idx]['prediction'])
                data['reactions'][reaction][idx][i]=prediction
        data['size']+=1

        if data['size']==nsize:
            save(data,'%s/mlsamples/%s'%(wdir,id_generator(12)))
            data=gen_dataframe(parman.order,obsres,nsize)

    print     

    #--close resman
    resman.shutdown()
Beispiel #4
0
    def __init__(self, tag):

        load_config('data/input-%s.py' % tag)
        resman = RESMAN(nworkers=1, parallel=False, datasets=False)
        self.parman = resman.parman
        self.jar = np.load('data/jar-%s.npy' % tag,
                           allow_pickle=True,
                           encoding='latin1').item()
        self.parman.order = self.jar['order']
        self.par = self.jar['par']
        self.nrep = len(self.par)
Beispiel #5
0
def gen_dist_from_fitpack(wdir,dist):

    print('\ngenerating  %s tables for benchmark using %s'%(dist,wdir))

    load_config('%s/input.py'%wdir)
    istep=core.get_istep()
    core.mod_conf(istep) #--set conf as specified in istep   

    resman=RESMAN(nworkers=1,parallel=False,datasets=False)
    parman=resman.parman

    jar=load('%s/data/jar-%d.dat'%(wdir,istep))
    replicas=jar['replicas']

    X,Q2=gen_grid(dist)
    qpd=conf[dist]


    nx=len(X)
    nQ2=len(Q2)

    flavs=[-5,-4,-3,-2,-1,1,2,3,4,5,21]
    fmap={-5:'bb',-4:'cb',-3:'sb',-2:'ub',-1:'db'}
    fmap.update({5:'b',4:'c',3:'s',2:'u',1:'d'})
    fmap.update({21:'g'})


    #--gen qpd data per replica
    checkdir('%s/benchmark'%wdir)
    cnt=0
    for par in replicas:
        lprint('progress: %d/%d'%(cnt+1,len(replicas)))
        parman.set_new_params(par)

        data={}
        for _ in Q2:
            data[_]={}
            for flav in flavs:
                data[_][flav]=np.array([qpd.get_xF(x,_,fmap[flav]) for  x in X])
        save(data,'%s/benchmark/%s-%d.dat'%(wdir,dist,cnt))
        cnt+=1
    print
Beispiel #6
0
def gen_tables(wdir, dist, file_name, info, info_only=False):

    print('\ngenerating LHAPDF tables for %s using %s' % (dist, wdir))

    load_config('%s/input.py' % wdir)
    istep = core.get_istep()
    core.mod_conf(istep)  #--set conf as specified in istep

    resman = RESMAN(nworkers=1, parallel=False, datasets=False)
    parman = resman.parman

    jar = load('%s/data/jar-%d.dat' % (wdir, istep))
    replicas = jar['replicas']

    #--check order consistency
    order = jar['order']
    parman.order = order

    #--create output dir
    checkdir(wdir + '/data/')
    checkdir(wdir + '/data/%s/' % file_name)

    #--gen lhapdf_data_files
    if info_only == False:
        cnt = 0
        for par in replicas:
            lprint('progress: %d/%d' % (cnt + 1, len(replicas)))
            parman.set_new_params(par)
            X, Q2, table = _gen_table(dist)
            gen_lhapdf_dat_file(X, Q2, table, wdir, file_name, cnt)
            cnt += 1
        print

    #--gen_lhapdf_info_file
    X, Q2 = gen_grid(dist)
    nrep = len(replicas)
    gen_lhapdf_info_file(X, Q2, nrep, wdir, file_name, info)
Beispiel #7
0
class MAXLIKE:
    def __init__(self,
                 inputfile,
                 nworkers=2,
                 verbose=False,
                 msrhook=None,
                 prior=None,
                 seed=None):

        self.nworkers = nworkers
        self.inputfile = inputfile
        self.verbose = verbose
        self.msrhook = msrhook
        self.prior = prior
        self.seed = seed

    def set_counters(self):
        self.chi2tot = 1e1000
        self.dchi2 = 0
        self.t0 = time.time()
        self.cnt = 0

    def print_status(self, res, rres, nres):

        #--update status parameters
        shifts = self.parman.shifts
        etime = (time.time() - self.t0) / 60
        npts = res.size
        chi2 = np.sum(res**2)
        rchi2 = np.sum(rres**2)
        nchi2 = np.sum(nres**2)
        chi2tot = chi2 + rchi2 + nchi2
        dchi2 = chi2tot - self.chi2tot
        if shifts > 2:
            if chi2tot < self.chi2tot:
                self.dchi2 = self.chi2tot - chi2tot
                self.chi2tot = chi2tot

        #--build header
        status = []
        status.append('JAM FITTER')
        status.append('count = %d' % self.cnt)
        status.append('elapsed time(mins)=%f' % etime)
        status.append('shifts  = %d' % shifts)
        status.append('npts    = %d' % npts)
        status.append('chi2    = %f' % chi2)
        status.append('rchi2   = %f' % rchi2)
        status.append('nchi2   = %f' % nchi2)
        status.append('chi2tot = %f' % (chi2tot))
        status.append('dchi2(iter)  = %f' % self.dchi2)
        status.append('dchi2(local) = %f' % dchi2)

        #--special output for pdfs
        #if 'pdf'  in conf['params']:
        #    for _ in conf['pdf'].sr:
        #        status.append('pdf %s:%f'%(_,conf['pdf'].sr[_]))

        #    #status.append('proton uvsr = %f'%conf['pdf'].sr['uvsr'])
        #    #status.append('proton dvsr = %f'%conf['pdf'].sr['dvsr'])
        #    #status.append('proton msr  = %f'%conf['pdf'].sr['msr'])
        #    #if 'svsr' in conf['pdf'].sr: status.append('proton svsr = %f'%conf['pdf'].sr['svsr'])

        #--report from resman
        status.append('')
        status.extend(self.resman.gen_report())

        #--report from parman
        parstatus = self.parman.gen_report()

        #--print into screen
        nstatus = len(status)
        nparstatus = len(parstatus)
        os.system('clear')
        for i in range(max([nstatus, nparstatus])):
            data = []
            if i < nstatus: data.append(status[i])
            else: data.append('')
            if i < nparstatus: data.append(parstatus[i])
            else: data.append('')
            print '%-120s  | %s' % tuple(data)
        return status, parstatus

    def get_residuals(self, par):
        res, rres, nres = self.resman.get_residuals(par)
        self.cnt += 1
        if self.cnt % conf['verbose'] == 0:
            self.print_status(res, rres, nres)
        if len(rres) != 0: res = np.append(res, rres)
        if len(nres) != 0: res = np.append(res, nres)
        return res

    def checklimits(self):

        for k in conf['params']:
            for kk in conf['params'][k]:
                if conf['params'][k][kk]['fixed'] != False: continue
                p = conf['params'][k][kk]['value']
                pmin = conf['params'][k][kk]['min']
                pmax = conf['params'][k][kk]['max']
                if p < pmin or p > pmax:
                    print '%s-%s out of limits. ' % (k, kk)
                    sys.exit()

        for k in conf['datasets']:
            for kk in conf['datasets'][k]['norm']:
                p = conf['datasets'][k]['norm'][kk]['value']
                pmin = conf['datasets'][k]['norm'][kk]['min']
                pmax = conf['datasets'][k]['norm'][kk]['max']
                if p < pmin or p > pmax:
                    print '%s-%s out of limits. ' % (k, kk)
                    sys.exit()

    def get_conf(self, _conf, step):

        conf = copy.deepcopy(_conf)

        #--remove pdf/ff that is not in the step
        distributions = conf['params'].keys()  #--pdf,ppdf,ffpion,ffkaon,...
        for dist in distributions:
            if dist in step['active distributions']:
                continue
            else:
                del conf['params'][dist]

        #--set fixed==True for passive distributions
        if 'passive distributions' in step:
            for dist in step['passive distributions']:
                for par in conf['params'][dist]:
                    conf['params'][dist][par]['fixed'] = True
                    #--set prior parameters values for passive distributions
                    for istep in step['dep']:
                        prior_order = self.order[istep]
                        prior_params = self.params[istep]
                        for i in range(len(prior_order)):
                            _, _dist, _par = prior_order[i]
                            if dist == _dist and par == _par:
                                conf['params'][dist][par][
                                    'value'] = prior_params[i]

        #--another version for fixed parameters
        if 'fix parameters' in step:
            for dist in step['fix parameters']:
                print dist
                for par in step['fix parameters'][dist]:
                    print par
                    conf['params'][dist][par]['fixed'] = True
                    #--set prior parameters values for passive distributions
                    for istep in step['dep']:
                        prior_order = self.order[istep]
                        prior_params = self.params[istep]
                        for i in range(len(prior_order)):
                            _, _dist, _par = prior_order[i]
                            if dist == _dist and par == _par:
                                conf['params'][dist][par][
                                    'value'] = prior_params[i]

        #--remove datasets not in the step
        datasets = conf['datasets'].keys()  #--idis,dy,....
        for dataset in datasets:
            if dataset in step['datasets']:

                #--remove entry from xlsx
                xlsx = conf['datasets'][dataset]['xlsx'].keys()
                for idx in xlsx:
                    if idx in step['datasets'][dataset]:
                        continue
                    else:
                        del conf['datasets'][dataset]['xlsx'][idx]

                #--remove entry from norm
                norm = conf['datasets'][dataset]['norm'].keys()
                for idx in norm:
                    if idx in step['datasets'][dataset]:
                        continue
                    else:
                        del conf['datasets'][dataset]['norm'][idx]
            else:
                del conf['datasets'][dataset]

        return conf

    def get_bounds(self):
        order = self.parman.order

        bounds_min = []
        bounds_max = []
        for entry in order:
            i, k, kk = entry
            if i == 1:
                p = conf['params'][k][kk]['value']
                pmin = conf['params'][k][kk]['min']
                pmax = conf['params'][k][kk]['max']
                if p < pmin or p > pmax:
                    msg = '%s/%s outsize the limits %f %f %f' % (k, kk, p,
                                                                 pmin, pmax)
                    raise ValueError(msg)
                bounds_min.append(conf['params'][k][kk]['min'])
                bounds_max.append(conf['params'][k][kk]['max'])
            elif i == 2:
                p = conf['datasets'][k]['norm'][kk]['value']
                pmin = conf['datasets'][k]['norm'][kk]['min']
                pmax = conf['datasets'][k]['norm'][kk]['max']
                if p < pmin or p > pmax:
                    msg = '%s/%s outsize the limits %f %f %f' % (k, kk, p,
                                                                 pmin, pmax)
                    raise ValueError(msg)
                bounds_min.append(conf['datasets'][k]['norm'][kk]['min'])
                bounds_max.append(conf['datasets'][k]['norm'][kk]['max'])

        return (bounds_min, bounds_max)

    def get_guess(self, dep=[]):

        order = self.parman.order
        if conf['flat par']:
            if self.seed != None: np.random.seed(12345)
            guess = self.parman.gen_flat()
        else:
            guess = self.parman.par

        #--retrieve priors from previous steps according to dep
        if len(dep) > 0:

            for istep in dep:
                prior_order = self.order[istep]
                prior_params = self.params[istep]
                #--compare and match prior order to current order
                for i in range(len(prior_order)):
                    for j in range(len(order)):
                        if order[j] == prior_order[i]:
                            guess[j] = prior_params[i]

        return guess

    def gen_summary(self, step, par):

        res, rres, nres = self.resman.get_residuals(par)
        status, parstatus = self.print_status(res, rres, nres)
        status.extend(parstatus)
        status = [l + '\n' for l in status]
        fname = 'step-%d.summary' % step
        F = open(fname, 'w')
        F.writelines(status)
        F.close()

    def get_par(self, step, dep=[]):

        #--current value must be within min and max
        self.checklimits()

        #--initialize resman
        self.resman = RESMAN(self.nworkers)
        self.parman = self.resman.parman

        #--setups
        guess = self.get_guess(dep)
        bounds = self.get_bounds()
        self.set_counters()
        self.parman.set_new_params(guess, initial=True)

        #--run fit
        fit = least_squares(self.get_residuals,
                            guess,
                            bounds=bounds,
                            method='trf',
                            ftol=conf['ftol'])

        #--generate summary. It will update system with the final results
        self.gen_summary(step, fit.x)

        #--close resman
        self.resman.shutdown()

        return fit.x

    def gen_output(self, istep):
        """
        modification of the input is done using a dedicated scrip
        at tools/inputmod.py
        """
        inputmod = INPUTMOD(self.inputfile)

        for kind in conf['params']:
            for par in conf['params'][kind]:
                value = conf['params'][kind][par]['value']
                inputmod.mod_par(kind, par, 'value', value)

        for reaction in conf['datasets']:
            for idx in conf['datasets'][reaction]['norm']:
                value = conf['datasets'][reaction]['norm'][idx]['value']
                inputmod.mod_norm(reaction, idx, 'value', value)

        fname = 'output-%d.py' % istep
        inputmod.gen_input(fname)

    def run(self):

        global conf

        load_config(self.inputfile)

        #--modify confs
        if 'hooks' not in conf:
            conf['hooks'] = {}
        if self.msrhook != None:
            conf['hooks']['msr'] = self.msrhook
        if self.verbose == False:
            conf['verbose'] = 1
        else:
            conf['verbose'] = self.verbose

        #--backup conf(after mods)
        conf_bkp = copy.deepcopy(conf)

        #--decide if the input should be modified
        output = True
        if 'bootstrap' in conf and conf['bootstrap'] == True: output = False

        if 'steps' in conf:
            isteps = sorted(conf['steps'])

            self.order = {}
            self.params = {}
            chi2 = {}

            if self.prior != None:
                prior = load(self.prior)
                self.order = prior['order']
                self.params = prior['params']
                chi2 = prior['chi2']
                prior_steps = sorted(self.order.keys())
                isteps = [i for i in isteps if i not in prior_steps]

            for i in isteps:
                step = conf['steps'][i]
                conf.update(copy.deepcopy(conf_bkp))
                conf.update(self.get_conf(conf_bkp, step))

                print
                msg = '--step %d: ' % i
                msg += 'npQCD objects ='
                for _ in conf['params'].keys():
                    msg += _ + ' '
                msg += 'datasets ='
                for _ in conf['datasets'].keys():
                    msg += _ + ' '
                print msg

                par = self.get_par(i, step['dep'])
                self.order[i] = self.parman.order[:]
                self.params[i] = par[:]
                chi2[i] = self.resman.get_chi2()
                if output: self.gen_output(i)

            #--store the results from steps
            data = {'order': self.order, 'params': self.params, 'chi2': chi2}
            if self.prior == None:
                fname = '%s.msr' % id_generator(size=12)
            else:
                fname = self.prior.split('/')[-1]
            save(data, fname)

            #--run hooks
            if 'msr' in conf['hooks']:  #--ms==multi steps
                cmd = conf['hooks']['msr'].replace('<<fname>>', fname)
                os.system(cmd)
        else:
            par = self.get_par(0)
            if output: self.gen_output(0)

        #--run remining hooks if available
        for _ in conf['hooks']:
            if _ == 'msr': continue
            os.system(conf['hooks'][_])
Beispiel #8
0
def gen_lhapdf_info_file(wdir, idxs, tar, info, dirname='JAMSIM'):

    #--get tables
    X, Q2, table, replicas = get_tables(wdir, idxs, tar)

    #--get flav string
    flavs = ''
    for idx in idxs:
        flavs += '%d, ' % idx
    flavs = flavs.rstrip(',')

    #--kinematic limits
    xmin = X[0]
    xmax = X[-1]
    Qmin = Q2[0]**0.5
    Qmax = Q2[-1]**0.5

    #--qcd params
    load_config('%s/input.py' % wdir)
    RESMAN(nworkers=1, parallel=False, datasets=False)
    aS = [conf['alphaS'].get_alphaS(_) for _ in Q2]
    mZ = conf['aux'].mZ
    mb = conf['aux'].mb
    mc = conf['aux'].mc
    alphaSMZ = conf['aux'].alphaSMZ

    #--begin lhapdf info file
    lines = []
    lines.append('SetDesc:         "<description>"')
    lines.append('SetIndex:        <index>')
    lines.append('Authors:         <authors>')
    lines.append('Reference:       <reference>')
    lines.append('Format:          lhagrid1')
    lines.append('DataVersion:     1')
    lines.append('NumMembers:      1')
    lines.append('Particle:        <particle>')
    lines.append('Flavors:         [%s]' % flavs)
    lines.append('OrderQCD:        1')
    lines.append('FlavorScheme:    <flav scheme>')
    lines.append('NumFlavors:      %d' % len(idxs))
    lines.append('ErrorType:       no error')
    lines.append('XMin:            %0.2e' % xmin)
    lines.append('XMax:            %0.2e' % xmax)
    lines.append('QMin:            %0.2e' % Qmin)
    lines.append('QMax:            %0.2e' % Qmax)
    lines.append('MZ:              %f' % mZ)
    lines.append('MUp:             0.0')
    lines.append('MDown:           0.0')
    lines.append('MStrange:        0.0')
    lines.append('MCharm:          %f' % mc)
    lines.append('MBottom:         %f' % mb)
    lines.append('MTop:            180.0')
    lines.append('AlphaS_MZ:       %f' % alphaSMZ)
    lines.append('AlphaS_OrderQCD: 1')
    lines.append('AlphaS_Type:     ipol')
    line = 'AlphaS_Qs: ['
    for _ in Q2:
        line += ('%10.5e, ' % _**0.5).upper()
    line = line.rstrip(',') + ']'
    lines.append(line)
    line = 'AlphaS_Vals: ['
    for _ in aS:
        line += ('%10.5e, ' % _).upper()
    line = line.rstrip(',') + ']'
    lines.append(line)
    lines.append('AlphaS_Lambda4: 0')
    lines.append('AlphaS_Lambda5: 0')

    for i in range(len(lines)):
        for _ in info:
            lines[i] = lines[i].replace(_, info[_])

    lines = [l + '\n' for l in lines]
    checkdir('%s/lhapdf/%s' % (wdir, dirname))
    tab = open('%s/lhapdf/%s/%s.info' % (wdir, dirname, dirname), 'w')
    tab.writelines(lines)
    tab.close()
Beispiel #9
0
############################################################################
# define datasets (kinematics) to perform the simulation

conf['datasets']={}
conf['datasets']['sidis']={}
conf['datasets']['sidis']['xlsx']={}
conf['datasets']['sidis']['xlsx'][1000]='./template.xlsx'  # |  proton   | pi+
conf['datasets']['sidis']['norm']={}
for idx in conf['datasets']['sidis']['xlsx']: conf['datasets']['sidis']['norm'][idx]={'value':1,'fixed':True,'min':0,'max':1}
conf['datasets']['sidis']['filters']={}


############################################################################
# run simulation
resman = RESMAN()
parman = conf['parman']
resman.get_residuals(parman.par)
print


############################################################################
# prepare the new pseudo data set and save it as xlsx file
simdata=pd.DataFrame(conf['sidis tabs'][1000])
simdata['value']=simdata['thy']
simdata['stat_u']=pd.Series(simdata['thy']*simdata['%stat']/100,index=simdata.index)
simdata['syst_u']=pd.Series(simdata['thy']*simdata['%syst']/100,index=simdata.index)
simdata=simdata.drop(['r-residuals','shift','alpha','residuals','yp','yh','W2','Shift','N','thy','%stat','%syst'],axis=1)
print simdata[:10]

writer = pd.ExcelWriter('simulation.xlsx')
Beispiel #10
0
def get_parameters(wdir, Q2=None):
    load_config('%s/input.py' % wdir)
    istep = core.get_istep()

    replicas = core.get_replicas(wdir)
    ## 'conf' will be modified for each replica individually later in the loop over 'replicas'
    ## the reason for doing this is that 'fix parameters' has to be set correctly for each replica

    if 'ppdf' not in conf['steps'][istep]['active distributions']:
        print('ppdf-proton not in active distribution')
        return

    resman = RESMAN(nworkers=1, parallel=False, datasets=False)
    parman = resman.parman
    parman.order = replicas[0]['order'][
        istep]  ## make sure 'parman' uses the same order as all the replicas do
    # print parman.order

    ppdf = conf['ppdf']

    ## setup kinematics
    if Q2 == None: Q2 = conf['Q20']
    ## get parameters for all flavors of PDF
    print('\ngetting ppdf-parameters from %s at Q2 = %.2f' % (wdir, Q2))

    ## check if any of the shapes are fixed
    shape_1 = []
    shape_2 = []
    shape_3 = []
    for parameter in conf['params']['ppdf']:
        if '1' in parameter:
            shape_1.append(conf['params']['ppdf'][parameter]['fixed'])
        elif '2' in parameter:
            shape_2.append(conf['params']['ppdf'][parameter]['fixed'])
        elif '3' in parameter:
            shape_3.append(conf['params']['ppdf'][parameter]['fixed'])
        else:
            print('there seems to be more than three shapes')
            print(parameter)
            sys.exit('please update script %s' % __file__)

    fixed_shape_1 = False
    fixed_shape_2 = False
    fixed_shape_3 = False
    if (len(shape_1) != 0) and all([_ == True for _ in shape_1]):
        fixed_shape_1 = True
    elif len(shape_1) == 0:
        fixed_shape_1 = True
    if (len(shape_2) != 0) and all([_ == True for _ in shape_2]):
        fixed_shape_2 = True
    elif len(shape_2) == 0:
        fixed_shape_2 = True
    if (len(shape_3) != 0) and all([_ == True for _ in shape_3]):
        fixed_shape_3 = True
    elif len(shape_3) == 0:
        fixed_shape_3 = True

    parameters = {}
    if not fixed_shape_1: parameters[1] = {}
    if not fixed_shape_2: parameters[2] = {}
    if not fixed_shape_3: parameters[3] = {}

    n_replicas = len(replicas)
    for i in range(n_replicas):
        lprint('%d/%d' % (i + 1, n_replicas))

        parman.order = copy.copy(replicas[i]['order'][istep])
        core.mod_conf(istep, replicas[i])
        parman.set_new_params(replicas[i]['params'][istep], initial=True)

        for flavor, value in ppdf.params.iteritems():
            for j in parameters:
                if str(j) in flavor:
                    flavor_key = flavor.replace(str(j), '')
                    if flavor_key not in parameters[j]:
                        parameters[j][flavor_key] = {
                            'n': [],
                            'a': [],
                            'b': [],
                            'c': [],
                            'd': []
                        }

                    parameters[j][flavor_key]['n'].append(value[0])
                    parameters[j][flavor_key]['a'].append(value[1])
                    parameters[j][flavor_key]['b'].append(value[2])
                    parameters[j][flavor_key]['c'].append(value[3])
                    parameters[j][flavor_key]['d'].append(value[4])
                else:
                    pass

    ## remove c or d parameters if fixed in all flavors and shapes
    ## this is to avoid producing empty figures
    shapes_fixed_c = []
    shapes_fixed_d = []
    for shape in parameters:
        flavors_fixed_c = []
        flavors_fixed_d = []
        for flavor in parameters[shape]:
            cs = parameters[shape][flavor]['c']
            ds = parameters[shape][flavor]['d']
            if all([_ == cs[0] for _ in cs]):
                flavors_fixed_c.append(True)
            else:
                flavors_fixed_c.append(False)
            if all([_ == ds[0] for _ in ds]):
                flavors_fixed_d.append(True)
            else:
                flavors_fixed_d.append(False)

        if all(flavors_fixed_c):
            shapes_fixed_c.append(True)
        else:
            shapes_fixed_c.append(False)
        if all(flavors_fixed_d):
            shapes_fixed_d.append(True)
        else:
            shapes_fixed_d.append(False)

    if all(shapes_fixed_c):
        for shape in parameters:
            for flavor in parameters[shape]:
                del parameters[shape][flavor]['c']
        print('parameter c is fixed for shape %s' % shape)
    if all(shapes_fixed_d):
        for shape in parameters:
            for flavor in parameters[shape]:
                del parameters[shape][flavor]['d']
        print('parameter d is fixed for shape %s' % shape)

    print
    checkdir('%s/data' % wdir)
    if Q2 == conf['Q20']:
        save(parameters, '%s/data/ppdf-parameters-%d.dat' % (wdir, istep))
    else:
        save(parameters,
             '%s/data/ppdf-parameters-%d-%f.dat' % (wdir, istep, Q2))
Beispiel #11
0
def get_moments(wdir, flavors, x_1, x_2, Q2=None):
    load_config('%s/input.py' % wdir)
    istep = core.get_istep()

    replicas = core.get_replicas(wdir)
    ## 'conf' will be modified for each replica individually later in the loop over 'replicas'
    ## the reason for doing this is that 'fix parameters' has to be set correctly for each replica

    if 'ppdf' not in conf['steps'][istep]['active distributions']:
        print('ppdf-proton not in active distribution')
        return

    resman = RESMAN(nworkers=1, parallel=False, datasets=False)
    parman = resman.parman
    parman.order = replicas[0]['order'][istep]
    ## make sure 'parman' uses the same order for active distributions as all the replicas do
    # print parman.order

    ppdf = conf['ppdf']

    ## setup kinematics
    # X = 10.0 ** np.linspace(-3, -1, 100)
    # X = np.append(X, np.linspace(0.1, 0.99, 100))
    if Q2 == None: Q2 = conf['Q20']
    print('\ngenerating momentus for polarized pdf-proton from %s at Q2 = %f' %
          (wdir, Q2))

    ## compute moments for all replicas
    moments = {}
    statistics = {}
    n_replicas = len(replicas)
    for i in range(n_replicas):
        lprint('%d/%d' % (i + 1, n_replicas))

        parman.order = copy.copy(replicas[i]['order'][istep])
        core.mod_conf(istep, replicas[i])
        parman.set_new_params(replicas[i]['params'][istep], initial=True)

        for flavor in flavors:
            if flavor not in moments: moments[flavor] = []
            if flavor not in statistics: statistics[flavor] = {}
            if flavor == 'up':
                func = lambda x: (ppdf.get_xF(x, Q2, 'u') + ppdf.get_xF(
                    x, Q2, 'ub')) / x
            elif flavor == 'dp':
                func = lambda x: (ppdf.get_xF(x, Q2, 'd') + ppdf.get_xF(
                    x, Q2, 'sb')) / x
            elif flavor == 'sp':
                func = lambda x: (ppdf.get_xF(x, Q2, 's') + ppdf.get_xF(
                    x, Q2, 'sb')) / x
            else:
                func = lambda x: ppdf.get_xF(x, Q2, flavor) / x

            moments[flavor].append(quad(func, x_1, x_2)[0])

    for flavor in flavors:
        statistics[flavor]['mean'] = np.mean(moments[flavor])
        statistics[flavor]['standard_deviation'] = np.std(moments[flavor])

    print
    for flavor in flavors:
        print flavor, ': ', statistics[flavor]

    checkdir('%s/data' % wdir)
    if Q2 == conf['Q20']:
        save({
            'Q2': Q2,
            'moments': moments,
            'statistics': statistics
        }, '%s/data/ppdf-moments-%s-to-%s-%d.dat' % (wdir, x_1, x_2, istep))
    else:
        save({
            'Q2': Q2,
            'moments': moments,
            'statistics': statistics
        }, '%s/data/ppdf-moments-%s-to-%s-%d-%f.dat' %
             (wdir, x_1, x_2, istep, Q2))
Beispiel #12
0
def gen_xf(wdir, flavors, Q2=None):
    load_config('%s/input.py' % wdir)
    istep = core.get_istep()

    replicas = core.get_replicas(wdir)
    ## 'conf' will be modified for each replica individually later in the loop over 'replicas'
    ## the reason for doing this is that 'fix parameters' has to be set correctly for each replica

    if 'ppdf' not in conf['steps'][istep]['active distributions']:
        print('ppdf-proton not in active distribution')
        return

    resman = RESMAN(nworkers=1, parallel=False, datasets=False)
    parman = resman.parman
    parman.order = replicas[0]['order'][istep]
    ## make sure 'parman' uses the same order for active distributions as all the replicas do
    # print parman.order

    ppdf = conf['ppdf']

    ## setup kinematics
    xs = 10.0**np.linspace(-3, -1, 100)
    xs = np.append(xs, np.linspace(0.1, 0.99, 100))
    if Q2 == None: Q2 = conf['Q20']
    print('\ngenerating polarized pdf-proton from %s at Q2 = %f' % (wdir, Q2))

    ## compute xf for all replicas
    xfs = {}
    n_replicas = len(replicas)
    for i in range(n_replicas):
        lprint('%d/%d' % (i + 1, n_replicas))

        ## filter
        #flag=False
        #params=replica['params'][istep]
        #order=replica['order'][istep]
        #for i in range(len(order)):
        #    if order[i][0]!=1:continue
        #    if order[i][1]!='ppdf':continue
        #    #if order[i][2]=='s1 a':
        #    #   if params[i]<-0.9: flag=True
        #if flag: continue

        parman.order = copy.copy(replicas[i]['order'][istep])
        core.mod_conf(istep, replicas[i])
        parman.set_new_params(replicas[i]['params'][istep], initial=True)

        for flavor in flavors:
            if flavor not in xfs: xfs[flavor] = []
            if flavor == 'up':
                func = lambda x: ppdf.get_xF(x, Q2, 'u') + ppdf.get_xF(
                    x, Q2, 'ub')
            elif flavor == 'dp':
                func = lambda x: ppdf.get_xF(x, Q2, 'd') + ppdf.get_xF(
                    x, Q2, 'sb')
            elif flavor == 'sp':
                func = lambda x: ppdf.get_xF(x, Q2, 's') + ppdf.get_xF(
                    x, Q2, 'sb')
            else:
                func = lambda x: ppdf.get_xF(x, Q2, flavor)

            xfs[flavor].append([func(x) for x in xs])
    print
    checkdir('%s/data' % wdir)
    if Q2 == conf['Q20']:
        save({
            'X': xs,
            'Q2': Q2,
            'XF': xfs
        }, '%s/data/ppdf-%d.dat' % (wdir, istep))
    else:
        save({
            'X': xs,
            'Q2': Q2,
            'XF': xfs
        }, '%s/data/ppdf-%d-%f.dat' % (wdir, istep, Q2))
Beispiel #13
0
def gen_xf(wdir, had, flavors=['g', 'u', 'ub', 'd', 'db', 's', 'sb'], Q2=None):

    fflabel = 'ff%s' % had
    print('\ngenerating ff-%s from %s' % (had, wdir))

    load_config('%s/input.py' % wdir)
    istep = core.get_istep()

    replicas = core.get_replicas(wdir)
    core.mod_conf(istep, replicas[0])  ## set conf as specified in istep

    if fflabel not in conf['steps'][istep]['active distributions']:
        print('ff-%s not in active distribution' % had)
        return

    resman = RESMAN(nworkers=1, parallel=False, datasets=False)
    parman = resman.parman

    jar = load('%s/data/jar-%d.dat' % (wdir, istep))
    ## 'jar' contains parameters and their orders
    replicas = jar['replicas']
    ## 'jar['replicas']' is a list, in which each element is a list of parameters obeying 'jar['order']'

    ff = conf[fflabel]

    ## setup kinematics
    X = np.linspace(0.01, 0.99, 100)
    if Q2 == None: Q2 = conf['Q20']

    ## compute XF for all replicas
    XF = {}
    cnt = 0
    for par in replicas:
        cnt += 1
        lprint('%d/%d' % (cnt, len(replicas)))

        ## filter
        #flag=False
        #params=replica['params'][istep]
        #order=replica['order'][istep]
        #for i in range(len(order)):
        #    if order[i][0]!=1:continue
        #    if order[i][1]!='pdf':continue
        #    #if order[i][2]=='s1 a':
        #    #   if params[i]<-0.9: flag=True
        #if flag: continue

        parman.set_new_params(par, initial=True)

        #print
        #print conf['ffpion'].get_xF(0.5,10.0,'u')
        #print conf['ffkaon'].get_xF(0.5,10.0,'u')
        #print ff.get_xF(0.5,10.0,'u')

        for flavor in flavors:
            if flavor not in XF: XF[flavor] = []
            if flavor == 'c' or flavor == 'cb' or flavor == 'c+cb':
                _Q2 = conf['aux'].mc2 + 1
            elif flavor == 'b' or flavor == 'bb' or flavor == 'b+bb':
                _Q2 = conf['aux'].mb2 + 1
            else:
                _Q2 = Q2
            if flavor == 'u+ub':
                func = lambda x: ff.get_xF(x, _Q2, 'u') + ff.get_xF(
                    x, _Q2, 'ub')
            elif flavor == 'd+db':
                func = lambda x: ff.get_xF(x, _Q2, 'd') + ff.get_xF(
                    x, _Q2, 'db')
            elif flavor == 's+sb':
                func = lambda x: ff.get_xF(x, _Q2, 's') + ff.get_xF(
                    x, _Q2, 'cb')
            elif flavor == 'c+cb':
                func = lambda x: ff.get_xF(x, _Q2, 'c') + ff.get_xF(
                    x, _Q2, 'cb')
            elif flavor == 'b+bb':
                func = lambda x: ff.get_xF(x, _Q2, 'b') + ff.get_xF(
                    x, _Q2, 'bb')
            else:
                func = lambda x: ff.get_xF(x, _Q2, flavor)

            XF[flavor].append([func(x) for x in X])
    #print func(0.5)
    print
    checkdir('%s/data' % wdir)
    if Q2 == conf['Q20']:
        save({
            'X': X,
            'Q2': Q2,
            'XF': XF
        }, '%s/data/ff%s-%d.dat' % (wdir, had, istep))
    else:
        save({
            'X': X,
            'Q2': Q2,
            'XF': XF
        }, '%s/data/ff%s-%d-%d.dat' % (wdir, had, istep, int(Q2)))
Beispiel #14
0
def print_grouped_parameters(working_directory,
                             distribution_name,
                             i_replica=1):
    ## print parameters from replicas and PDF class to compare
    load_config('%s/input.py' % working_directory)
    istep = core.get_istep()

    replicas = core.get_replicas(working_directory)
    core.mod_conf(istep, replicas[0])  ## set conf as specified in istep

    if distribution_name not in conf['steps'][istep]['active distributions']:
        print('%s-proton is not an active distribution' % distribution_name)
        return

    resman = RESMAN(nworkers=1, parallel=False, datasets=False)
    parman = resman.parman
    parman.order = replicas[0]['order'][
        istep]  ## make sure 'parman' uses the same order as all the replicas do
    # print parman.order

    distribution = conf[distribution_name]

    print('%s parameters in class' % distribution_name)
    core.mod_conf(istep, replicas[i_replica - 1])
    parman.set_new_params(replicas[i_replica - 1]['params'][istep],
                          initial=True)
    for name, value in distribution.params.iteritems():
        if value[0] != 0.0:
            print '%7s: %.5e, %.5e, %.5e, %.5e, %.5e' % (
                name, value[0], value[1], value[2], value[3], value[4])

    print('%s parameters in replicas' % distribution_name)
    orders = []
    unique_orders = []
    values = []
    for i in range(len(replicas[i_replica - 1]['order'][istep])):
        order = replicas[i_replica - 1]['order'][istep][i]
        value = replicas[i_replica - 1]['params'][istep][i]
        if (order[0] == 1) and (order[1] == distribution_name):
            orders.append(order[2])
            unique_orders.append(order[2].split(' ')[0])
            values.append(value)

    unique_orders = list(set(unique_orders))
    for unique_order in unique_orders:
        parameters = []
        all_parameters = {'N': None, 'a': 0.0, 'b': 0.0, 'c': 0.0, 'd': 0.0}
        for i in range(len(orders)):
            if orders[i].split(' ')[0] == unique_order:
                all_parameters[orders[i].split(' ')[1]] = values[i]
        if all_parameters == {
                'N': None,
                'a': 0.0,
                'b': 0.0,
                'c': 0.0,
                'd': 0.0
        }:
            continue
        if all_parameters['N'] == None:
            print '%7s: None, %.5e, %.5e, %.5e, %.5e' % (
                unique_order, all_parameters['a'], all_parameters['b'],
                all_parameters['c'], all_parameters['d'])
        else:
            print '%7s: %.5e, %.5e, %.5e, %.5e, %.5e' % (
                unique_order, all_parameters['N'], all_parameters['a'],
                all_parameters['b'], all_parameters['c'], all_parameters['d'])