def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=Random() self.seed=option_obj.seed self.rand.seed(self.seed) self.evo_strat=ec.SA(self.rand) self.evo_strat.terminator=terminators.evaluation_termination if option_obj.output_level=="1": self.evo_strat.observer=[observers.population_observer,observers.file_observer] else: self.evo_strat.observer=[observers.file_observer] self.max_evaluation=option_obj.max_evaluation self.mutation_rate=option_obj.mutation_rate self.g_m=option_obj.m_gauss self.g_std=option_obj.std_gauss self.inint_T=option_obj.init_temp self.cooling_rate=option_obj.cooling_rate self.num_params=option_obj.num_params self.SetBoundaries(option_obj.boundaries) self.maximize=False #hard wired, always minimize self.stat_file=open("stat_file.txt","w") self.ind_file=open("ind_file.txt","w") #inspyred needs sequence of seeds #self.starting_points=[normalize(args.get("starting_points",uniform(self.rand,{"num_params" : self.num_params,"self": self})),self)] try: if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=None if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=Random() self.seed=option_obj.seed self.rand.seed(self.seed) self.evo_strat=ec.SA(self.rand) self.evo_strat.terminator=terminators.evaluation_termination if option_obj.output_level=="1": self.evo_strat.observer=[observers.population_observer,observers.file_observer] else: self.evo_strat.observer=[observers.file_observer] self.max_evaluation=option_obj.max_evaluation self.mutation_rate=option_obj.mutation_rate self.g_m=option_obj.m_gauss self.g_std=option_obj.std_gauss self.inint_T=option_obj.init_temp self.cooling_rate=option_obj.cooling_rate self.num_inputs=option_obj.num_inputs self.SetBoundaries(option_obj.boundaries) self.maximize=False #hard wired, always minimize self.stat_file=open("stat_file.txt","w") self.ind_file=open("ind_file.txt","w") #inspyred needs sequence of seeds #self.starting_points=[normalize(args.get("starting_points",uniform(self.rand,{"num_inputs" : self.num_inputs,"self": self})),self)] try: if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=None if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj,resolution): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.num_inputs=option_obj.num_inputs self.num_points_per_dim=resolution #self.resolution=5 #print self.resolution self.SetBoundaries(option_obj.boundaries)
def __init__(self,reader_obj,model_obj,option_obj,resolution): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.num_params=option_obj.num_params self.num_points_per_dim=resolution #self.resolution=5 #print self.resolution self.SetBoundaries(option_obj.boundaries)
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=Random() self.seed=option_obj.seed self.rand.seed(self.seed) #PSO algorithm self.evo_strat=inspyred.swarm.PSO(self.rand) #algorithm terminates at max number of generations self.evo_strat.terminator=terminators.generation_termination if option_obj.output_level=="1": self.evo_strat.observer=[observers.population_observer,observers.file_observer] else: self.evo_strat.observer=[observers.file_observer] self.max_evaluation=option_obj.max_evaluation self.pop_size=option_obj.pop_size #PSO attributes self.inertia=option_obj.inertia self.cognitive_rate=option_obj.cognitive_rate self.social_rate=option_obj.social_rate #self.neighborhood_size=int(round(option_obj.neighborhood_size)) self.topology=inspyred.swarm.topologies.star_topology self.num_params=option_obj.num_params self.SetBoundaries(option_obj.boundaries) self.maximize=False #hard wired, always minimize self.stat_file=open("stat_file.txt","w") self.ind_file=open("ind_file.txt","w") #inspyred needs sequence of seeds #self.starting_points=[normalize(args.get("starting_points",uniform(self.rand,{"num_params" : self.num_params,"self": self})),self)] try: if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=None if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=Random() self.seed=option_obj.seed self.rand.seed(self.seed) self.evo_strat=ec.DEA(self.rand) # - *num_selected* -- the number of individuals to be selected (default 2) # - *tournament_size* -- the tournament size (default 2) # - *crossover_rate* -- the rate at which crossover is performed # (default 1.0) # - *mutation_rate* -- the rate at which mutation is performed (default 0.1) # - *gaussian_mean* -- the mean used in the Gaussian function (default 0) # - *gaussian_stdev* -- the standard deviation used in the Gaussian function # (default 1) self.evo_strat.terminator=terminators.generation_termination if option_obj.output_level=="1": self.evo_strat.observer=[observers.population_observer,observers.file_observer] else: self.evo_strat.observer=[observers.file_observer] self.pop_size=option_obj.pop_size self.max_evaluation=option_obj.max_evaluation self.mutation_rate=option_obj.mutation_rate self.crossover_rate=option_obj.crossover_rate self.num_params=option_obj.num_params self.SetBoundaries(option_obj.boundaries) self.maximize=False #hard wired, always minimize self.stat_file=open("stat_file.txt","w") self.ind_file=open("ind_file.txt","w") #inspyred needs sequence of seeds #self.starting_points=[normalize(args.get("starting_points",uniform(self.rand,{"num_params" : self.num_params,"self": self})),self)] try: #print type(option_obj.starting_points) if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=None if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=Random() self.seed=option_obj.seed self.rand.seed(self.seed) self.pop_size=option_obj.pop_size self.num_inputs=option_obj.num_inputs self.SetBoundaries(option_obj.boundaries) try: #print type(option_obj.starting_points) if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=None if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=random self.seed=option_obj.seed self.rand.seed([self.seed]) self.max_evaluation=option_obj.max_evaluation self.accuracy=option_obj.acc self.num_inputs=option_obj.num_inputs self.SetBoundaries(option_obj.boundaries) try: if isinstance(option_obj.starting_points[0],list): raise TypeError else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=uniform(self.rand,{"num_inputs" : self.num_inputs,"self": self}) if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=Random() self.seed=option_obj.seed self.rand.seed(self.seed) self.pop_size=option_obj.pop_size self.num_params=option_obj.num_params self.SetBoundaries(option_obj.boundaries) try: #print type(option_obj.starting_points) if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=None if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=random self.seed=option_obj.seed self.rand.seed([self.seed]) self.max_evaluation=option_obj.max_evaluation self.accuracy=option_obj.acc self.num_params=option_obj.num_params self.SetBoundaries(option_obj.boundaries) try: if isinstance(option_obj.starting_points[0],list): raise TypeError else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=uniform(self.rand,{"num_params" : self.num_params,"self": self}) if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=random self.seed=option_obj.seed self.rand.seed([self.seed]) self.temp=option_obj.temperature self.num_iter=option_obj.num_iter self.num_repet=option_obj.num_repet self.step_size=option_obj.step_size self.freq=option_obj.update_freq self.num_inputs=option_obj.num_inputs self.SetBoundaries(option_obj.boundaries) try: if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=uniform(self.rand,{"num_inputs" : self.num_inputs,"self": self}) if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=random self.seed=option_obj.seed self.rand.seed([self.seed]) self.temp=option_obj.temperature self.num_iter=option_obj.num_iter self.num_repet=option_obj.num_repet self.step_size=option_obj.step_size self.freq=option_obj.update_freq self.num_params=option_obj.num_params self.SetBoundaries(option_obj.boundaries) try: if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=uniform(self.rand,{"num_params" : self.num_params,"self": self}) if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=Random() self.seed=option_obj.seed self.rand.seed(self.seed) self.evo_strat=ec.ES(self.rand) self.evo_strat.terminator=terminators.generation_termination self.evo_strat.selector=inspyred.ec.selectors.default_selection self.evo_strat.replacer=inspyred.ec.replacers.generational_replacement self.evo_strat.variator=[variators.gaussian_mutation, variators.blend_crossover] if option_obj.output_level=="1": self.evo_strat.observer=[observers.population_observer,observers.file_observer] else: self.evo_strat.observer=[observers.file_observer] self.pop_size=option_obj.pop_size self.max_evaluation=option_obj.max_evaluation self.mutation_rate=option_obj.mutation_rate self.num_inputs=option_obj.num_inputs self.SetBoundaries(option_obj.boundaries) self.maximize=False #hard wired, always minimize self.stat_file=open("stat_file.txt","w") self.ind_file=open("ind_file.txt","w") #inspyred needs sequence of seeds #self.starting_points=[normalize(args.get("starting_points",uniform(self.rand,{"num_inputs" : self.num_inputs,"self": self})),self)] try: #print type(option_obj.starting_points) if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=None if option_obj.output_level=="1": print "starting points: ",self.starting_points
def __init__(self,reader_obj,model_obj,option_obj): self.fit_obj=fF(reader_obj,model_obj,option_obj) self.SetFFun(option_obj) self.rand=Random() self.seed=option_obj.seed self.rand.seed(self.seed) self.evo_strat=ec.ES(self.rand) self.evo_strat.terminator=terminators.generation_termination self.evo_strat.selector=inspyred.ec.selectors.default_selection self.evo_strat.replacer=inspyred.ec.replacers.generational_replacement self.evo_strat.variator=[variators.gaussian_mutation, variators.blend_crossover] if option_obj.output_level=="1": self.evo_strat.observer=[observers.population_observer,observers.file_observer] else: self.evo_strat.observer=[observers.file_observer] self.pop_size=option_obj.pop_size self.max_evaluation=option_obj.max_evaluation self.mutation_rate=option_obj.mutation_rate self.num_params=option_obj.num_params self.SetBoundaries(option_obj.boundaries) self.maximize=False #hard wired, always minimize self.stat_file=open("stat_file.txt","w") self.ind_file=open("ind_file.txt","w") #inspyred needs sequence of seeds #self.starting_points=[normalize(args.get("starting_points",uniform(self.rand,{"num_params" : self.num_params,"self": self})),self)] try: #print type(option_obj.starting_points) if isinstance(option_obj.starting_points[0],list): self.starting_points=option_obj.starting_points else: self.starting_points=[normalize(option_obj.starting_points,self)] except TypeError: self.starting_points=None if option_obj.output_level=="1": print "starting points: ",self.starting_points