ntest_output[0:data.shape[0]/ntest, j] = data[range(j, data.shape[0], ntest), 9] hlr_output[0:data.shape[0]/ntest, j] = data[range(j, data.shape[0], ntest), 10] g1_output[0:data.shape[0]/ntest, j] = data[range(j, data.shape[0], ntest), 11] g2_output[0:data.shape[0]/ntest, j] = data[range(j, data.shape[0], ntest), 12] # First do the plots of g1 YMAX_ZOOMIN = 1e-4 XMIN = -.6 XMAX = .5 plt.clf() plt.axhline(ls='--', color='k') plt.axvline(ls='--', color='k') plt.xlim(XMIN, XMAX) for i in range(ntest)[:-1]: # First fit a line to the points c, m, var_c, cov_cm, var_m = fitting.fitline( g1obs_draw[0:data.shape[0]/ntest, i], delta_g1obs[0:data.shape[0]/ntest, i]) if i < 7: fmt='x' else: fmt='o' plt.errorbar( g1obs_draw[0:data.shape[0]/ntest, i], delta_g1obs[0:data.shape[0]/ntest, i], yerr=err_g1obs[0:data.shape[0]/ntest, i], fmt=fmt, label=r"n = %.1f, m = %.2e $\pm$ %.2e" % ( test_sersic_highn_basic.SERSIC_N_TEST[i], m, np.sqrt(var_m))) plt.xlabel(r'g$_1$ (DFT)') plt.ylabel(r'$\Delta$g$_1$ (DFT - Photon)') plt.ylim(-YMAX_ZOOMIN, YMAX_ZOOMIN) plt.legend() #plt.title(test_case) plt.subplots_adjust(left=0.15)
j] = data[range(j, data.shape[0], ntest), 11] g2_output[0:data.shape[0] / ntest, j] = data[range(j, data.shape[0], ntest), 12] # First do the plots of g1 YMAX_ZOOMIN = 1e-4 XMIN = -.6 XMAX = .5 plt.clf() plt.axhline(ls='--', color='k') plt.axvline(ls='--', color='k') plt.xlim(XMIN, XMAX) for i in range(ntest)[:-1]: # First fit a line to the points c, m, var_c, cov_cm, var_m = fitting.fitline( g1obs_draw[0:data.shape[0] / ntest, i], delta_g1obs[0:data.shape[0] / ntest, i]) if i < 7: fmt = 'x' else: fmt = 'o' plt.errorbar( g1obs_draw[0:data.shape[0] / ntest, i], delta_g1obs[0:data.shape[0] / ntest, i], yerr=err_g1obs[0:data.shape[0] / ntest, i], fmt=fmt, label=r"n = %.1f, m = %.2e $\pm$ %.2e" % (test_sersic_highn_basic.SERSIC_N_TEST[i], m, np.sqrt(var_m))) plt.xlabel(r'g$_1$ (DFT)') plt.ylabel(r'$\Delta$g$_1$ (DFT - Photon)') plt.ylim(-YMAX_ZOOMIN, YMAX_ZOOMIN)