Beispiel #1
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            LOG.debug('Initialize BaseEstimator parent class')
        except Exception as e:
            LOG.error(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            self.conveyor.setError(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            return

        # Load estimator parameters
        self.estimator_parameters = self.param.getDict('PLSR_parameters')

        # Scale is hard-coded to False for making use of external scalers
        self.estimator_parameters['scale'] = False

        self.name = "PLSR"

        # Check if the model is quantitative
        if not self.param.getVal('quantitative'):
            LOG.error('PLSR only applies to quantitative data')
            self.conveyor.setError('PLSR only applies to quantitative data')
            return
Beispiel #2
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            
            LOG.debug('Initialize BaseEstimator parent class')
        except Exception as e:
            LOG.error(f'Error initializing BaseEstimator parent class with exception: {e}')
            self.conveyor.setError(f'Error initializing BaseEstimator parent class with exception: {e}')
            return

        # Load estimator parameters
        self.estimator_parameters = self.param.getDict('SVM_parameters')
        
        # Load tune parameters
        self.tune_parameters = self.param.getDict('SVM_optimize')
        
        if self.param.getVal('quantitative'):
            # Remove parameters of SVC class and set the name
            self.name = "SVM-R"
            self.estimator_parameters.pop("class_weight", None)
            self.estimator_parameters.pop("probability", None)
            self.estimator_parameters.pop("decision_function_shape", None)
            self.estimator_parameters.pop("random_state", None)
            self.tune_parameters.pop("class_weight", None)
            self.tune_parameters.pop("random_state", None)
            self.tune_parameters.pop("probability", None)

        else:
            # Remove parameters of SVR class and set the name
            self.estimator_parameters.pop("epsilon", None)
            self.name = "SVM-C"
Beispiel #3
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            LOG.debug('Initialize BaseEstimator parent class')
        except Exception as e:
            self.conveyor.setError(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            LOG.error(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            return

        # Load estimator parameters
        self.estimator_parameters = self.param.getDict('XGBOOST_parameters')

        # Load tune parameters
        self.tune_parameters = self.param.getDict('XGBOOST_optimize')

        if self.param.getVal('quantitative'):
            self.estimator_parameters['objective'] = 'reg:squarederror'
            self.name = "XGB-Regressor"
        else:
            self.estimator_parameters['objective'] = 'binary:logistic'
            self.name = "XGB-Classifier"

        # Missing value must be defined. Otherwyse it returns 'nan' which cannot be
        # converted to JSON and produces trouble in different points
        self.estimator_parameters['missing'] = -99.99999
Beispiel #4
0
Datei: RF.py Projekt: e7dal/flame
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            LOG.debug('Initialize BaseEstimator parent class')
        except Exception as e:
            self.conveyor.setError(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            LOG.error(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            return

        # Load estimator parameters
        self.estimator_parameters = self.param.getDict('RF_parameters')

        # Load tune parameters
        self.tune_parameters = self.param.getDict('RF_optimize')

        if self.param.getVal('quantitative'):
            self.name = "RF-R"
            self.tune_parameters.pop("class_weight")
            self.estimator_parameters.pop("class_weight")
        else:
            self.name = "RF-C"
Beispiel #5
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self,X, Y, parameters, conveyor)
            LOG.debug('Initialize BaseEstimator parent class')
        except Exception as e:
            LOG.error(f'Error initializing BaseEstimator parent class with exception: {e}')
            self.conveyor.setError(f'Error initializing BaseEstimator parent class with exception: {e}')
            return

        # Load estimator parameters
        self.estimator_parameters = self.param.getDict('PLSDA_parameters')

        # Solves back-comptibility issue
        if 'optimize' in self.estimator_parameters:
            self.estimator_parameters.pop("optimize") 
        
        # Scale is hard-coded to False for making use of external scalers        
        self.estimator_parameters['scale'] = False

        self.name = "PLSDA"

        if 'threshold' in self.estimator_parameters:
            self.threshold = self.estimator_parameters['threshold']
        else:
            self.threshold = 0.5

        if self.param.getVal('quantitative'):
            self.conveyor.setError('PLSDA only applies to qualitative data')
            return 

        # For confidential models, create an empty estimator
        if self.param.getVal('confidential'):                
            self.estimator = PLS_da(**self.estimator_parameters)
Beispiel #6
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            LOG.debug('Initialize BaseEstimator parent class')
        except Exception as e:
            LOG.error(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            self.conveyor.setError(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            return

        # Load estimator parameters
        self.estimator_parameters = self.param.getDict('PLSDA_parameters')

        # Scale is hard-coded to False for making use of external scalers
        self.estimator_parameters['scale'] = False

        self.name = "PLSDA"

        if self.param.getVal('quantitative'):
            LOG.error('PLSDA only applies to qualitative data')
            self.conveyor.setError('PLSDA only applies to qualitative data')
            return

        if self.param.getVal('conformal'):
            LOG.error('Conformal prediction no implemented in PLSDA yet')
            self.conveyor.setError(
                'Conformal prediction no implemented in PLSDA yet')
            return
Beispiel #7
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            LOG.debug('Initialize BaseEstimator parent class')
        except Exception as e:
            LOG.error(f'Error initializing BaseEstimator parent'
                      f'class with exception: {e}')
            raise e

        self.method_name = ''
Beispiel #8
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            LOG.debug('Initializing BaseEstimator parent class')
        except Exception as e:
            self.conveyor.setError(f'Error initializing BaseEstimator parent class with exception: {e}')
            LOG.error(f'Error initializing BaseEstimator parent class with exception: {e}')
            return

        # Load estimator parameters                
        self.estimator_parameters = self.param.getDict('GNB_parameters')

        if self.param.getVal('quantitative'):
            self.conveyor.setError('GNB only applies to qualitative data')
            LOG.error('GNB only applies to qualitative data')
        else:
            self.name = "GNB-Classifier"
Beispiel #9
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            LOG.debug('Initializing BaseEstimator parent class')
        except Exception as e:
            self.conveyor.setError(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            LOG.error(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            return

        # Load estimator parameters
        GNB_parameters = self.param.getDict('GNB_parameters')
        priors = [0.0, 0.0]
        if 'prior_negative' in GNB_parameters and GNB_parameters[
                'prior_negative'] != None:
            priors[0] = GNB_parameters['prior_negative']
        if 'prior_positive' in GNB_parameters and GNB_parameters[
                'prior_positive'] != None:
            priors[1] = GNB_parameters['prior_positive']

        self.estimator_parameters = {}
        if GNB_parameters['var_smoothing'] is not None:
            self.estimator_parameters['var_smoothing'] = GNB_parameters[
                'var_smoothing']

        if priors[0] != 0.0 and priors[1] != 0.0:
            if priors[0] + priors[1] != 1.0:
                LOG.error(
                    f'GNB: the sum of the priors should be 1. priors set to {priors[0], priors[1]} '
                )
                priors[1] = 1.0 - priors[0]
            self.estimator_parameters['priors'] = priors
            # self.param.setInnerVal('GNB_parameters','priors',priors)

        if self.param.getVal('quantitative'):
            self.conveyor.setError('GNB only applies to qualitative data')
            LOG.error('GNB only applies to qualitative data')
        else:
            self.name = "GNB-Classifier"
Beispiel #10
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            LOG.debug('Initialize BaseEstimator parent class')
        except Exception as e:
            self.conveyor.setError(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            LOG.error(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            return

        # Load estimator parameters
        self.estimator_parameters = self.param.getDict('RF_parameters')

        # patch to solve bug in the object_type definition of max_depth
        # should not appear from versions older than 20/01/2021
        if 'max_depth' in self.estimator_parameters:
            v = self.estimator_parameters['max_depth']
            if v is not None:
                try:
                    self.estimator_parameters['max_depth'] = int(v)
                except:
                    self.estimator_parameters['max_depth'] = None

        # Load tune parameters
        self.tune_parameters = self.param.getDict('RF_optimize')

        if self.param.getVal('quantitative'):
            self.name = "RF-R"
            self.tune_parameters.pop("class_weight")
            self.estimator_parameters.pop("class_weight")
        else:
            self.name = "RF-C"
Beispiel #11
0
    def __init__(self, X, Y, parameters, conveyor):
        # Initialize parent class
        try:
            BaseEstimator.__init__(self, X, Y, parameters, conveyor)
            LOG.debug('Initialize BaseEstimator parent class')
        except Exception as e:
            self.conveyor.setError(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            LOG.error(
                f'Error initializing BaseEstimator parent class with exception: {e}'
            )
            return

        # Load estimator parameters
        self.estimator_parameters = self.param.getDict('Keras_parameters')

        # Load tune parameters
        self.tune_parameters = self.param.getDict('Keras_optimize')

        if self.param.getVal('quantitative'):
            self.name = "Keras-Regressor"
        else:
            self.name = "Keras-Classifier"