def __init__(self): self.flappybird = FlappyBird() self.current_observation = None self.current_theory = None self.action_counter = 0 self.theories_manager = TheoriesManager() self.theories_manager.get_theories_from_json('theories_saved.json') self.just_restarted = False self.turns_for_jump = 0
class Agent: def __init__(self): self.flappybird = FlappyBird() def init(self): pass """ * Method used to determine the next move to be performed by the agent. * now is moving random """ def act(self): self.observeworld() if self.myRandom() == 2: self.flappybird.holdKeyDown() else: self.flappybird.releaseKey() def myRandom(self): return random.randint(0, 2) def observeworld(self): positions = self.flappybird.getWorldPositionObjets() print("Upper block: ", positions[0]) print("Bottom block: ", positions[1]) print("Bird: ", positions[0]) print("Count: ", self.flappybird.counter) print("Dead: ", self.flappybird.dead) def run(self): self.flappybird.initGame() while True: self.flappybird.eachCicle() self.act()
def main(): best = None best_speed = None tmp_speed = None fp = FlappyBird() bird = Bird() best_speed = fp.run(bird, best, best_speed) best = bird while True: bird = Bird() tmp_speed = fp.run(bird, best, best_speed) if bird.fitness > best.fitness: best = bird best_speed = tmp_speed
def main(): n_birds = 15 n_generations = 1000 best_info = None fp = FlappyBird() ga = GeneticAlgorithm(n_birds, lambda brain: Bird(_brain=brain)) birds = ga.init_population() fp.run(birds, best_info) birds, best_info = ga.evolve(birds) best_info = best_info + (1, ) show_best(best_info) for i in xrange(n_generations): fp.run(birds, best_info) birds, tmp = ga.evolve(birds) if tmp[2] > best_info[2]: best_info = tmp + (i + 2, ) show_best(best_info)
def flappy_game(self): game = FlappyBird() game.run()
class Agent: def __init__(self): self.flappybird = FlappyBird() self.current_observation = None self.current_theory = None self.action_counter = 0 self.theories_manager = TheoriesManager() self.theories_manager.get_theories_from_json('theories_saved.json') self.just_restarted = False self.turns_for_jump = 0 def init(self): pass """ * Method used to determine the next move to be performed by the agent. * now is moving random """ def print_relevant(self): print('-----------------') print("Cycles: ", self.action_counter) print("Current Observation: ", self.current_observation.get_code()) print("Dead: ", self.flappybird.dead) print("Theory count: ", self.theories_manager.theories_size() ) #Not really theory count, actually scenarios theorized about def act(self): if self.turns_for_jump > 0: self.turns_for_jump -= 1 self.bird_act(False) return self.observe_world() if self.current_theory is not None: self.update_theory() self.print_relevant() if self.current_observation.get_dead_state(): self.current_theory = None self.bird_act(False) else: if self.action_counter > 1 and self.action_counter % 10000 == 0: self.theories_manager.save_theories_to_json( 'theories_saved.json') jump = self.choose_action() self.action_counter += 1 self.turns_for_jump = 4 self.bird_act(jump) def choose_action(self): if self.action_counter < 2000: self.act_from_theories_with_exploration(19) elif self.action_counter < 5000: self.act_from_theories_with_exploration(10) elif self.action_counter < 10000: self.act_from_theories_with_exploration(5) else: self.act_from_theories_with_exploration(2) return self.current_theory.get_jump() def update_theory(self): theory_is_finished = self.current_theory.is_finished() theory_was_correct = self.current_theory.is_correct( self.current_observation) if theory_is_finished and theory_was_correct: self.theories_manager.update_theory(self.current_theory) elif theory_is_finished: new_theory = self.theories_manager.new_theory( self.current_theory.get_observation_before(), self.current_theory.get_jump()) self.theories_manager.finish_and_add_theory( new_theory, self.current_observation, self.just_restarted) else: self.theories_manager.finish_and_add_theory( self.current_theory, self.current_observation, self.just_restarted) def my_random(self): return random.randint(0, 20) def observe_world(self): positions = self.flappybird.getWorldPositionObjets() self.current_observation = Observation(self.flappybird.counter, self.flappybird.dead) self.current_observation.set_relative_positions(positions) self.just_restarted = self.current_observation.just_restarted( positions) def bird_act(self, jump): if jump: self.turns_for_jump = 9 self.flappybird.holdKeyDown() else: self.flappybird.releaseKey() def run(self): self.flappybird.initGame() while True: self.flappybird.eachCicle() self.act() def act_from_theories_with_exploration(self, probability): should_not_explore = self.my_random() > probability best_theory, both_actions_already_explored, death_actions = self.theories_manager.get_best_theory( self.current_observation) if best_theory is not None: theory_may_cause_death = death_actions[int(best_theory.get_jump())] if death_actions[0] and death_actions[1]: # theory_may_cause_death = False print('DEATH FOR BOTH ACTIONS') elif theory_may_cause_death: print('POSSIBLE DEATH!! IF ', best_theory.get_jump()) if both_actions_already_explored or should_not_explore: self.current_theory = best_theory print('THEORY BASED: ', self.next_action()) else: opposite_action = not best_theory.get_jump() self.current_theory = self.theories_manager.new_theory( self.current_observation, opposite_action) print('EXPLORING: ', self.next_action()) else: self.random_act() def random_act(self): jump = self.my_random() == 2 self.current_theory = self.theories_manager.new_theory( self.current_observation, jump) print('ACTING RANDOM: ', self.next_action()) def next_action(self): if self.current_theory.get_jump(): return 'JUMP' else: return 'FALL'
def __init__(self): self.flappybird = FlappyBird();