def test_predict_sklearn():
    """Tests that we can generate predictions from a scikit-learn ``Bunch``."""
    bunch = datasets.load_iris()
    model = TemplateSKLearnClassifier(num_features=DummyDataset.num_features, num_classes=DummyDataset.num_classes)
    data_pipe = DataPipeline(preprocess=TemplatePreprocess())
    out = model.predict(bunch, data_source="sklearn", data_pipeline=data_pipe)
    assert isinstance(out[0], int)
def test_predict_numpy():
    """Tests that we can generate predictions from a numpy array."""
    row = np.random.rand(1, DummyDataset.num_features)
    model = TemplateSKLearnClassifier(num_features=DummyDataset.num_features, num_classes=DummyDataset.num_classes)
    data_pipe = DataPipeline(preprocess=TemplatePreprocess())
    out = model.predict(row, data_pipeline=data_pipe)
    assert isinstance(out[0], int)
Beispiel #3
0
def test_forward(num_classes, shape):
    """Tests that a tensor can be given to the model forward and gives the correct output size."""
    model = TemplateSKLearnClassifier(
        num_features=shape[1],
        num_classes=num_classes,
    )
    model.eval()

    row = torch.rand(*shape)

    out = model(row)
    assert out.shape == (shape[0], num_classes)
Beispiel #4
0
def test_jit(tmpdir, jitter, args):
    path = os.path.join(tmpdir, "test.pt")

    model = TemplateSKLearnClassifier(num_features=16, num_classes=10)
    model.eval()

    model = jitter(model, *args)

    torch.jit.save(model, path)
    model = torch.jit.load(path)

    out = model(torch.rand(1, 16))
    assert isinstance(out, torch.Tensor)
    assert out.shape == torch.Size([1, 10])
Beispiel #5
0
def test_test(tmpdir):
    """Tests that the model can be tested on our ``DummyDataset``."""
    model = TemplateSKLearnClassifier(num_features=DummyDataset.num_features,
                                      num_classes=DummyDataset.num_classes)
    test_dl = torch.utils.data.DataLoader(DummyDataset(), batch_size=4)
    trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
    trainer.test(model, test_dl)
Beispiel #6
0
def test_predict_sklearn():
    """Tests that we can generate predictions from a scikit-learn ``Bunch``."""
    bunch = datasets.load_iris()
    model = TemplateSKLearnClassifier(num_features=DummyDataset.num_features,
                                      num_classes=DummyDataset.num_classes)
    datamodule = TemplateData.from_sklearn(predict_bunch=bunch, batch_size=1)
    trainer = Trainer()
    out = trainer.predict(model, datamodule=datamodule, output="classes")
    assert isinstance(out[0][0], int)
Beispiel #7
0
def test_predict_numpy():
    """Tests that we can generate predictions from a numpy array."""
    row = np.random.rand(1, DummyDataset.num_features)
    model = TemplateSKLearnClassifier(num_features=DummyDataset.num_features,
                                      num_classes=DummyDataset.num_classes)
    datamodule = TemplateData.from_numpy(predict_data=row, batch_size=1)
    trainer = Trainer()
    out = trainer.predict(model, datamodule=datamodule, output="classes")
    assert isinstance(out[0][0], int)
Beispiel #8
0
def test_smoke():
    """A simple test that the class can be instantiated."""
    model = TemplateSKLearnClassifier(num_features=1, num_classes=1)
    assert model is not None
Beispiel #9
0
from flash.core.classification import Labels
from flash.template import TemplateData, TemplateSKLearnClassifier

# 1. Download the data
data_bunch = datasets.load_iris()

# 2. Load the data
datamodule = TemplateData.from_sklearn(
    train_bunch=data_bunch,
    val_split=0.8,
)

# 3. Build the model
model = TemplateSKLearnClassifier(
    num_features=datamodule.num_features,
    num_classes=datamodule.num_classes,
    serializer=Labels(),
)

# 4. Create the trainer.
trainer = flash.Trainer(max_epochs=1,
                        limit_train_batches=1,
                        limit_val_batches=1)

# 5. Train the model
trainer.fit(model, datamodule=datamodule)

# 6. Save it!
trainer.save_checkpoint("template_model.pt")

# 7. Classify a few examples
Beispiel #10
0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from sklearn import datasets

from flash import Trainer
from flash.template import TemplateData, TemplateSKLearnClassifier

# 1. Download the data
data_bunch = datasets.load_iris()

# 2. Load the model from a checkpoint
model = TemplateSKLearnClassifier.load_from_checkpoint("https://flash-weights.s3.amazonaws.com/template_model.pt")

# 3. Classify a few examples
predictions = model.predict([
    np.array([4.9, 3.0, 1.4, 0.2]),
    np.array([6.9, 3.2, 5.7, 2.3]),
    np.array([7.2, 3.0, 5.8, 1.6]),
])
print(predictions)

# 4. Or generate predictions from a whole dataset!
datamodule = TemplateData.from_sklearn(predict_bunch=data_bunch)

predictions = Trainer().predict(model, datamodule=datamodule)
print(predictions)
Beispiel #11
0
import numpy as np
import torch
from sklearn import datasets

import flash
from flash.template import TemplateData, TemplateSKLearnClassifier

# 1. Create the DataModule
datamodule = TemplateData.from_sklearn(
    train_bunch=datasets.load_iris(),
    val_split=0.1,
    batch_size=4,
)

# 2. Build the task
model = TemplateSKLearnClassifier(num_features=datamodule.num_features,
                                  num_classes=datamodule.num_classes)

# 3. Create the trainer and train the model
trainer = flash.Trainer(max_epochs=3, gpus=torch.cuda.device_count())
trainer.fit(model, datamodule=datamodule)

# 4. Classify a few examples
datamodule = TemplateData.from_numpy(
    predict_data=[
        np.array([4.9, 3.0, 1.4, 0.2]),
        np.array([6.9, 3.2, 5.7, 2.3]),
        np.array([7.2, 3.0, 5.8, 1.6]),
    ],
    batch_size=4,
)
predictions = trainer.predict(model, datamodule=datamodule, output="classes")