#!/usr/bin/env python from flask_application import app if __name__ == '__main__': if app.debug: app.run(debug=True) else: app.run(host='0.0.0.0')
#!env python import sys from pprint import pprint def show(obj): """Show the dump of the properties of the object.""" pprint(vars(obj)) if sys.flags.interactive: from flask_application import * print "Loading Flask App in console mode. Use show(<obj)> to introspect." elif __name__ == "__main__": from flask_application import app app.run(host="127.0.0.1", port=8080)
#!env python import sys from pprint import pprint def show(obj): '''Show the dump of the properties of the object.''' pprint(vars(obj)) if sys.flags.interactive: from flask_application import * #from flask_application.models import * print 'Loading Flask App in console mode. Use show(<obj)> to introspect.' elif __name__ == '__main__': from flask_application import app app.debug = True app.run(host = "0.0.0.0", port = 8080)
from flask_application import app import os if __name__ == "__main__": try: # If Flask is running on Docker, # use host and port specified in Docker image if int(os.environ["DOCKER"]) == 1: app.run(host=os.environ["HOST"], port=int(os.environ["PORT"]), debug=True, threaded=True) except KeyError: # default config app.run(host="0.0.0.0", port="8080", debug=False, threaded=True)
form = PredictForm() # form = YesNoQuestionForm() if form.validate_on_submit(): flash("making prediction for the data given...") dictionary = make_dictionary(form) output = make_prediction(dictionary) text = "Predicted price is {}".format(output) return render_template("home.html", form=form, prediction_text=text) return render_template("home.html", form=form) @app.route("/predict", methods=["POST"]) @login_required def results(): if not request.json: abort(400) data = request.get_json(force=True) if not validate_json(data): abort(422) prediction = make_prediction(data) return jsonify(prediction) if __name__ == "__main__": app.run() # curl -u 'eyJhbGciOiJIUzUxMiJ9.InByYXRlZWsi.6pTTZjSXEyyqq_RMPaM53H9B-GMaT7sBZyPucNm-agpuSh4YY6573lUGwMTsTiGHsyuqN9MOKS9F6xWFK_kDYg':'eyJhbGciOiJIUzUxMiJ9.ImZsYXNrIg._s8ubXhQqH_s3RfO4CrPL5keU_s04k-1ZefmdIxtSS3m_aJsY9asSNpZDISjp_hVpvJLEnkislqe42enl8qtnQ' -i -H "Content-Type: application/json" -X POST -d '{"longitude":2, "latitude":2, "housing_median_age":1000, "total_rooms":2, "total_bedrooms":3, "population":5, "households":4, "median_income":10000, "ocean_proximity":"NEAR BAY"}' http://localhost:5000/predict