Beispiel #1
0
 def _obstable_tree(self):
     if not self._obstable_tree_cache:
         llh = self.likelihood
         info = copy(llh.obstable_sm)
         for flh_name, flh in llh.fast_likelihoods.items():
             # loop over fast likelihoods: they only have a single "measurement"
             m = flh.pseudo_measurement
             ml = flh.full_measurement_likelihood
             pred = ml.get_predictions_par(self.par_dict_np, self.w)
             for i, obs in enumerate(flh.observables):
                 info[obs]['theory'] = pred[obs]
                 ll_central = info[obs]['ll_central']
                 ll_sm = info[obs]['ll_sm']
                 ll = m.get_logprobability_single(obs, pred[obs])
                 # DeltaChi2 is -2*DeltaLogLikelihood
                 info[obs]['pull exp.'] = pull(-2 * (ll - ll_central), dof=1)
                 s = -1 if ll > ll_sm else 1
                 info[obs]['pull SM'] = s * pull(-2 * (ll - ll_sm), dof=1)
         for lh_name, lh in llh.likelihoods.items():
             # loop over "normal" likelihoods
             ml = lh.measurement_likelihood
             pred = ml.get_predictions_par(self.par_dict_np, self.w)
             for i, obs in enumerate(lh.observables):
                 info[obs]['theory'] = pred[obs]
                 ll_central = info[obs]['ll_central']
                 ll_sm = info[obs]['ll_sm']
                 p_comb = info[obs]['exp. PDF']
                 ll = p_comb.logpdf([pred[obs]])
                 info[obs]['pull exp.'] = pull(-2 * (ll - ll_central), dof=1)
                 s = -1 if ll > ll_sm else 1
                 info[obs]['pull SM'] = s * pull(-2 * (ll - ll_sm), dof=1)
         self._obstable_tree_cache = info
     return self._obstable_tree_cache
Beispiel #2
0
 def _obstable_tree(self):
     if not self._obstable_tree_cache:
         info = tree()  # nested dict
         pull_dof = 1
         llh = self.likelihood
         for flh_name, flh in llh.fast_likelihoods.items():
             # loop over fast likelihoods: they only have a single "measurement"
             m = flh.pseudo_measurement
             ml = flh.full_measurement_likelihood
             pred = ml.get_predictions_par(llh.par_dict, self.w)
             sm_cov = flh.sm_covariance.get(force=False)
             _, exp_cov = flh.exp_covariance.get(force=False)
             inspire_dict = self._get_inspire_dict(flh.observables, ml)
             for i, obs in enumerate(flh.observables):
                 info[obs]['lh_name'] = flh_name
                 info[obs]['name'] = obs if isinstance(obs, str) else obs[0]
                 info[obs]['theory'] = pred[obs]
                 info[obs]['th. unc.'] = np.sqrt(sm_cov[i, i])
                 info[obs]['experiment'] = m.get_central(obs)
                 info[obs]['exp. unc.'] = np.sqrt(exp_cov[i, i])
                 info[obs]['exp. PDF'] = NormalDistribution(
                     m.get_central(obs), np.sqrt(exp_cov[i, i]))
                 info[obs]['inspire'] = sorted(set(inspire_dict[obs]))
                 ll_central = m.get_logprobability_single(
                     obs, m.get_central(obs))
                 ll = m.get_logprobability_single(obs, pred[obs])
                 # DeltaChi2 is -2*DeltaLogLikelihood
                 info[obs]['pull'] = pull(-2 * (ll - ll_central),
                                          dof=pull_dof)
         for lh_name, lh in llh.likelihoods.items():
             # loop over "normal" likelihoods
             ml = lh.measurement_likelihood
             pred = ml.get_predictions_par(llh.par_dict, self.w)
             inspire_dict = self._get_inspire_dict(lh.observables, ml)
             for i, obs in enumerate(lh.observables):
                 obs_dict = flavio.Observable.argument_format(obs, 'dict')
                 obs_name = obs_dict.pop('name')
                 with warnings.catch_warnings():
                     warnings.simplefilter("ignore")
                     p_comb = flavio.combine_measurements(
                         obs_name,
                         include_measurements=ml.get_measurements,
                         **obs_dict)
                 info[obs]['experiment'] = p_comb.central_value
                 info[obs]['exp. unc.'] = max(p_comb.error_left,
                                              p_comb.error_right)
                 info[obs]['exp. PDF'] = p_comb
                 info[obs]['inspire'] = sorted(set(inspire_dict[obs]))
                 info[obs]['theory'] = pred[obs]
                 info[obs]['th. unc.'] = 0
                 info[obs]['lh_name'] = lh_name
                 info[obs]['name'] = obs if isinstance(obs, str) else obs[0]
                 ll = p_comb.logpdf([pred[obs]]) - p_comb.logpdf(
                     [p_comb.central_value])
                 info[obs]['pull'] = pull(-2 * ll, dof=pull_dof)
         self._obstable_tree_cache = info
     return self._obstable_tree_cache
Beispiel #3
0
def predictions(filename):
    f = open(filename, 'at', buffering=1)
    chiSM = chi2()
    obscalc = [('<Rmue>(B+->Kll)', 1.0, 6.0), ('<Rmue>(B0->K*ll)', 0.045, 1.1),
               ('<Rmue>(B0->K*ll)', 1.1, 6.0)]
    for w in wcs:
        f.write(w.__name__ + '\n=================\n')
        chi = lambda cr, ci: chi2(w(cr, ci))
        m = Minuit(chi,
                   cr=0,
                   ci=0,
                   error_cr=0.01,
                   error_ci=0.01,
                   errordef=1,
                   print_level=0)
        m.migrad()
        f.write('\tBest fit: ' + str(m.values[0]) + ' + ' + str(m.values[1]) +
                'i\n')
        chibf = m.fval
        f.write('\tPull (sqrt): ' + str(sqrt(chiSM - chibf)) + '\n')
        f.write('\tPull (sigma): ' + str(pull(chiSM - chibf, 2)) + r' \sigma' +
                '\n')
        f.write('\tChi2/dof: ' + str(chibf / (nobs - 2)) + '\n')
        #m.minos()
        xr_centr = m.values[0]
        xi_centr = m.values[1]
        wcObj = w(xr_centr, xi_centr)
        cont = m.mncontour('cr', 'ci', numpoints=40)[2]
        for o in range(0, len(obscalc)):
            obs_centr = flavio.np_prediction(obscalc[o][0], wcObj,
                                             *obscalc[o][1:])
            obs_max = obs_min = obs_centr
            for i in range(0, len(cont)):
                wcObj = w(*cont[i])
                obs_max = max(
                    obs_max,
                    flavio.np_prediction(obscalc[o][0], wcObj,
                                         *obscalc[o][1:]))
                obs_min = min(
                    obs_min,
                    flavio.np_prediction(obscalc[o][0], wcObj,
                                         *obscalc[o][1:]))
            f.write('\t' + str(obscalc[o]) + ': ' + str(obs_centr) + ' + ' +
                    str(obs_max - obs_centr) + ' - ' +
                    str(obs_centr - obs_min) + '\n')
        f.write('\n\n')
    f.close()