Beispiel #1
0
def mlp_net2net():
    num_classes = 10

    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    #y_train = np.random.randint(1, 9, size=(len(y_train),1), dtype='int32')
    print("shape: ", x_train.shape)

    #teacher

    input_tensor1 = Input(batch_shape=[0, 784], dtype="float32")

    d1 = Dense(512, input_shape=(784, ), activation="relu")
    d2 = Dense(512, activation="relu")
    d3 = Dense(num_classes)

    output = d1(input_tensor1)
    output = d2(output)
    output = d3(output)
    output = Activation("softmax")(output)

    teacher_model = Model(input_tensor1, output)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    teacher_model.compile(optimizer=opt)

    teacher_model.fit(x_train, y_train, epochs=1)

    d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel)
    d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel)
    d3_kernel, d3_bias = d3.get_weights(teacher_model.ffmodel)

    # student

    input_tensor2 = Input(batch_shape=[0, 784], dtype="float32")

    sd1 = Dense(512, input_shape=(784, ), activation="relu")
    sd2 = Dense(512, activation="relu")
    sd3 = Dense(num_classes)

    output = sd1(input_tensor2)
    output = sd2(output)
    output = sd3(output)
    output = Activation("softmax")(output)

    student_model = Model(input_tensor2, output)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    student_model.compile(optimizer=opt)

    sd1.set_weights(student_model.ffmodel, d1_kernel, d1_bias)
    sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias)
    sd3.set_weights(student_model.ffmodel, d3_kernel, d3_bias)

    student_model.fit(x_train, y_train, epochs=1)
def top_level_task():
  
  num_classes = 10
  
  (x_train, y_train), (x_test, y_test) = mnist.load_data()
  
  x_train = x_train.reshape(60000, 784)
  x_train = x_train.astype('float32')
  x_train /= 255
  y_train = y_train.astype('int32')
  y_train = np.reshape(y_train, (len(y_train), 1))
  print("shape: ", x_train.shape)
  
  model = Sequential()
  d1 = Dense(512, input_shape=(784,), kernel_initializer=GlorotUniform(123), bias_initializer=Zeros())
  model.add(d1)
  model.add(Activation('relu'))
  model.add(Dropout(0.2))
  model.add(Dense(512, activation="relu"))
  model.add(Dropout(0.2))
  model.add(Dense(num_classes))
  model.add(Activation("softmax"))

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
  model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy'])
  
  print(model.summary())

  model.fit(x_train, y_train, epochs=20, callbacks=[VerifyMetrics(ModelAccuracy.MNIST_MLP), EpochVerifyMetrics(ModelAccuracy.MNIST_MLP)])
  model.evaluate(x=x_train, y=y_train)
Beispiel #3
0
def top_level_task():
    num_classes = 10

    img_rows, img_cols = 28, 28

    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))

    input_tensor = Input(shape=(1, 28, 28), dtype="float32")

    output = Conv2D(filters=32,
                    input_shape=(1, 28, 28),
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    activation="relu")(input_tensor)
    #  output = Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")(output)
    output = Conv2D(filters=64,
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    kernel_initializer=GlorotUniform(123),
                    bias_initializer=Zeros())(output)
    output = Activation('relu')(output)
    output = MaxPooling2D(pool_size=(2, 2), strides=(2, 2),
                          padding="valid")(output)
    output = Dropout(0.25)(output)
    output = Flatten()(output)
    output = Dense(128, activation="relu")(output)
    output = Dense(num_classes)(output)
    output = Activation("softmax")(output)

    model = Model(input_tensor, output)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'sparse_categorical_crossentropy'])

    print(model.summary())

    flatten1 = model.get_layer(name='flat')
    t1 = flatten1.output_tensors[0]
    t2 = flatten1.input_tensors[0]
    print("t1: ", t1.to_layers, " ", t1.from_layer)
    print("t2: ", t2.to_layers, " ", t2.from_layer)

    model.fit(x_train,
              y_train,
              epochs=5,
              callbacks=[
                  VerifyMetrics(ModelAccuracy.MNIST_CNN),
                  EpochVerifyMetrics(ModelAccuracy.MNIST_CNN)
              ])
Beispiel #4
0
def mlp():
    num_classes = 10

    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    #y_train = np.random.randint(1, 9, size=(len(y_train),1), dtype='int32')
    print("shape: ", x_train.shape)

    input_tensor = Input(batch_shape=[0, 784], dtype="float32")

    output = Dense(512, input_shape=(784, ), activation="relu")(input_tensor)
    output2 = Dense(512, activation="relu")(output)
    output3 = Dense(num_classes)(output2)
    output4 = Activation("softmax")(output3)

    model = Model(input_tensor, output4)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt)

    model.fit(x_train, y_train, epochs=1)
Beispiel #5
0
def top_level_task():

    num_classes = 10

    img_rows, img_cols = 28, 28

    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    print("shape: ", x_train.shape, x_train.__array_interface__["strides"])

    layers = [
        Conv2D(filters=32,
               input_shape=(1, 28, 28),
               kernel_size=(3, 3),
               strides=(1, 1),
               padding=(1, 1),
               activation="relu"),
        Conv2D(filters=64,
               kernel_size=(3, 3),
               strides=(1, 1),
               padding=(1, 1),
               activation="relu"),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid"),
        Flatten()
    ]
    model1 = Sequential(layers)

    input_tensor = Input(shape=(12544, ), dtype="float32")

    output = Dense(512, input_shape=(12544, ), activation="relu")(input_tensor)
    output = Dense(num_classes)(output)
    output = Activation("softmax")(output)

    model2 = Model(input_tensor, output)

    model = Sequential()
    model.add(model1)
    model.add(model2)

    print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'sparse_categorical_crossentropy'])

    print(model.summary())

    model.fit(x_train,
              y_train,
              epochs=5,
              callbacks=[
                  VerifyMetrics(ModelAccuracy.MNIST_CNN),
                  EpochVerifyMetrics(ModelAccuracy.MNIST_CNN)
              ])
Beispiel #6
0
def top_level_task():
    num_classes = 10

    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    print("shape: ", x_train.shape)

    input_tensor = Input(shape=(784, ))

    output = Dense(512, input_shape=(784, ), activation="relu")(input_tensor)
    output2 = Dense(512, activation="relu")(output)
    output3 = Dense(num_classes)(output2)
    output4 = Activation("softmax")(output3)

    model = Model(input_tensor, output4)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(
        optimizer=opt,
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy',
                 metrics.SparseCategoricalCrossentropy()])

    model.fit(x_train,
              y_train,
              epochs=10,
              callbacks=[
                  VerifyMetrics(ModelAccuracy.MNIST_MLP),
                  EpochVerifyMetrics(ModelAccuracy.MNIST_MLP)
              ])
Beispiel #7
0
def top_level_task():
  
  num_classes = 10
  
  num_samples = 10000
  
  (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)
  
  x_train = x_train.astype('float32')
  x_train /= 255
  #x_train *= 0
  #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32')
  y_train = y_train.astype('int32')
  print("shape: ", x_train.shape)
  
  model = Sequential()
  model.add(Conv2D(filters=32, input_shape=(3,32,32), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid"))
  model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid"))
  model.add(Flatten())
  model.add(Dense(512, activation="relu"))
  model.add(Dense(num_classes))
  model.add(Activation("softmax"))
  
  print(model.summary())

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
  model.compile(optimizer=opt)

  model.fit(x_train, y_train, epochs=1)
Beispiel #8
0
def top_level_task():

    num_classes = 10

    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    #y_train = np.random.randint(1, 9, size=(len(y_train),1), dtype='int32')
    print("shape: ", x_train.shape)

    model = Sequential()
    model.add(Dense(512, input_shape=(784, ), activation="relu"))
    model.add(Dense(512, activation="relu"))
    model.add(Dense(num_classes))
    model.add(Activation("softmax"))

    print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt)

    model.fit(x_train, y_train, epochs=1)
Beispiel #9
0
def create_student_model(teacher_model, num_classes, x_train, y_train):
  dense1 = teacher_model.get_layer(0)
  d1_kernel, d1_bias = dense1.get_weights(teacher_model.ffmodel)
  print(d1_kernel.shape, d1_bias.shape)
  # print(d1_kernel)
  # print(d1_bias)
  dense2 = teacher_model.get_layer(1)
  d2_kernel, d2_bias = dense2.get_weights(teacher_model.ffmodel)
  
  dense3 = teacher_model.get_layer(2)
  d3_kernel, d3_bias = dense3.get_weights(teacher_model.ffmodel)
  
  model = Sequential()
  model.add(Dense(512, input_shape=(784,), activation="relu"))
  model.add(Dense(512, activation="relu"))
  model.add(Dense(num_classes))
  model.add(Activation("softmax"))

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
  model.compile(optimizer=opt)
  
  dense1s = model.get_layer(0)
  dense2s = model.get_layer(1)
  dense3s = model.get_layer(2)
  
  dense1s.set_weights(model.ffmodel, d1_kernel, d1_bias)
  dense2s.set_weights(model.ffmodel, d2_kernel, d2_bias)
  dense3s.set_weights(model.ffmodel, d3_kernel, d3_bias)
  
  d3_kernel, d3_bias = dense3s.get_weights(model.ffmodel)
  print(d3_kernel)
  print(d3_bias)
  

  model.fit(x_train, y_train, epochs=1)
def top_level_task():
    num_classes = 10

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    print("shape: ", x_train.shape)

    input_tensor1 = Input(shape=(3, 32, 32), dtype="float32", name="input1")
    input_tensor2 = Input(shape=(3, 32, 32), dtype="float32", name="input2")

    ot1 = cifar_cnn_sub(input_tensor1, 1)
    model1 = Model(input_tensor1, ot1)
    print(model1.summary())
    ot2 = cifar_cnn_sub(input_tensor2, 2)
    model2 = Model(input_tensor2, ot2)
    print(model2.summary())
    output_tensor = Concatenate(axis=1)([model1.output, model2.output])
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Conv2D(filters=64,
                           kernel_size=(3, 3),
                           strides=(1, 1),
                           padding=(1, 1),
                           activation="relu",
                           name="conv2d_0_4")(output_tensor)
    output_tensor = Conv2D(filters=64,
                           kernel_size=(3, 3),
                           strides=(1, 1),
                           padding=(1, 1),
                           activation="relu")(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = Dense(512, activation="relu")(output_tensor)
    output_tensor = Dense(num_classes)(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    model = Model([input_tensor1, input_tensor2], output_tensor)
    # print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'sparse_categorical_crossentropy'])
    print(model.summary())

    model.fit([x_train, x_train],
              y_train,
              epochs=160,
              callbacks=[
                  VerifyMetrics(ModelAccuracy.CIFAR10_CNN),
                  EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN)
              ])
def top_level_task():
  
  num_classes = 10
  
  num_samples = 10000
  
  (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)
  
  x_train = x_train.astype('float32')
  x_train /= 255
  y_train = y_train.astype('int32')
  print("shape: ", x_train.shape)
  
  model = Sequential()
  model.add(Conv2D(filters=32, input_shape=(3,32,32), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(Conv2D(filters=32, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid"))
  model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid"))
  model.add(Flatten())
  model.add(Dense(512, activation="relu"))
  model.add(Dense(num_classes))
  model.add(Activation("softmax"))

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.02)
  model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy'])
  print(model.summary())

  model.fit(x_train, y_train, epochs=80, callbacks=[VerifyMetrics(ModelAccuracy.CIFAR10_CNN), EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN)])
Beispiel #12
0
def cifar_cnn_concat():
    num_classes = 10

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    x_train = x_train.astype('float32')
    x_train /= 255
    #x_train *= 0
    #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32')
    y_train = y_train.astype('int32')
    print("shape: ", x_train.shape)

    input_tensor1 = Input(batch_shape=[0, 3, 32, 32], dtype="float32")
    input_tensor2 = Input(batch_shape=[0, 3, 32, 32], dtype="float32")

    ot1 = cifar_cnn_sub(input_tensor1, 1)
    ot2 = cifar_cnn_sub(input_tensor2, 2)
    ot3 = cifar_cnn_sub(input_tensor2, 3)
    output_tensor = Concatenate(axis=1)([ot1, ot2, ot3])
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    o1 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu",
                name="conv2d_0_4")(output_tensor)
    o2 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu",
                name="conv2d_1_4")(output_tensor)
    output_tensor = Concatenate(axis=1)([o1, o2])
    output_tensor = Conv2D(filters=64,
                           kernel_size=(3, 3),
                           strides=(1, 1),
                           padding=(1, 1),
                           activation="relu")(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = Dense(512, activation="relu")(output_tensor)
    output_tensor = Dense(num_classes)(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    model = Model([input_tensor1, input_tensor2], output_tensor)

    print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt)

    model.fit([x_train, x_train], y_train, epochs=1)
def top_level_task():
  num_classes = 10

  (x_train, y_train), (x_test, y_test) = mnist.load_data()

  x_train = x_train.reshape(60000, 784)
  x_train = x_train.astype('float32')
  x_train /= 255
  y_train = y_train.astype('int32')
  y_train = np.reshape(y_train, (len(y_train), 1))
  print("shape: ", x_train.shape)
  
  # input_tensor1 = Input(shape=(256,))
  input_tensor11 = Input(shape=(256,))
  input_tensor12 = Input(shape=(256,))
  input_tensor2 = Input(shape=(256,))
  input_tensor3 = Input(shape=(256,))
  input_tensor4 = Input(shape=(256,))
  
  # t1 = Dense(512, activation="relu", name="dense1")(input_tensor1)
  # t1 = Dense(512, activation="relu", name="dense12")(t1)
  # model1 = Model(input_tensor1, t1)
  t11 = Dense(512, activation="relu", name="dense1")(input_tensor11)
  model11 = Model(input_tensor11, t11)
  t12 = model11(input_tensor12)
  t1 = Dense(512, activation="relu", name="dense12")(t12)
  model1 = Model(input_tensor12, t1)
  
  t2 = Dense(512, activation="relu", name="dense2")(input_tensor2)
  t2 = Dense(512, activation="relu", name="dense22")(t2)
  model2 = Model(input_tensor2, t2)
  t3 = Dense(512, activation="relu", name="dense3")(input_tensor3)
  t3 = Dense(512, activation="relu", name="dense33")(t3)
  model3 = Model(input_tensor3, t3)
  t4 = Dense(512, activation="relu", name="dense4")(input_tensor4)
  t4 = Dense(512, activation="relu", name="dense44")(t4)
  model4 = Model(input_tensor4, t4)
  
  input_tensor = Input(shape=(784,))
  t00 = Input(shape=(784,), name="input_00")
  t01 = Input(shape=(784,), name="input_01")
  t1 = model1(input_tensor)
  t2 = model2(input_tensor)
  t3 = model3(input_tensor)
  t4 = model4(input_tensor)
  output = Concatenate(axis=1)([t00, t01, t1, t2, t3, t4])
  output = Dense(num_classes)(output)
  output = Activation("softmax")(output)
  
  model = Model([t00, t01, input_tensor], output)

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
  model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy'])
  
  print(model.summary())

  model.fit([x_train, x_train, x_train], y_train, epochs=10, callbacks=[VerifyMetrics(ModelAccuracy.MNIST_MLP), EpochVerifyMetrics(ModelAccuracy.MNIST_MLP)])
Beispiel #14
0
def top_level_task():

    num_classes = 10

    img_rows, img_cols = 28, 28

    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    print("shape: ", x_train.shape, x_train.__array_interface__["strides"])

    # model = Sequential()
    # model.add(Conv2D(filters=32, input_shape=(1,28,28), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
    # model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
    # model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid"))
    # model.add(Flatten())
    # model.add(Dense(128, activation="relu"))
    # model.add(Dense(num_classes))
    # model.add(Activation("softmax"))

    layers = [
        Conv2D(filters=32,
               input_shape=(1, 28, 28),
               kernel_size=(3, 3),
               strides=(1, 1),
               padding=(1, 1),
               activation="relu"),
        Conv2D(filters=64,
               kernel_size=(3, 3),
               strides=(1, 1),
               padding=(1, 1),
               activation="relu"),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="valid"),
        Flatten(),
        Dense(128, activation="relu"),
        Dense(num_classes),
        Activation("softmax")
    ]
    model = Sequential(layers)

    print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt)

    model.fit(x_train, y_train, epochs=1)
Beispiel #15
0
def cnn_concat():
    num_classes = 10

    img_rows, img_cols = 28, 28

    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))

    input_tensor = Input(batch_shape=[0, 1, 28, 28], dtype="float32")

    t1 = Conv2D(filters=32,
                input_shape=(1, 28, 28),
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")(input_tensor)
    t2 = Conv2D(filters=32,
                input_shape=(1, 28, 28),
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")(input_tensor)
    output = Concatenate(axis=1)([t1, t2])
    output = Conv2D(filters=64,
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    activation="relu")(output)
    output = MaxPooling2D(pool_size=(2, 2), strides=(2, 2),
                          padding="valid")(output)
    output = Flatten()(output)
    output = Dense(128, activation="relu")(output)
    output = Dense(num_classes)(output)
    output = Activation("softmax")(output)

    model = Model(input_tensor, output)
    print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt)

    model.fit(x_train, y_train, epochs=1)
Beispiel #16
0
def create_teacher_model_cnn(num_classes, x_train, y_train):
  model = Sequential()
  model.add(Conv2D(filters=32, input_shape=(1,28,28), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid"))
  model.add(Flatten())
  model.add(Dense(128, activation="relu"))
  model.add(Dense(num_classes))
  model.add(Activation("softmax"))

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
  model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy'])
  
  print(model.summary())

  model.fit(x_train, y_train, epochs=5)
  return model
Beispiel #17
0
def create_teacher_model(num_classes, x_train, y_train):
  model = Sequential()
  model.add(Dense(512, input_shape=(784,), activation="relu"))
  model.add(Dense(512, activation="relu"))
  model.add(Dense(num_classes))
  model.add(Activation("softmax"))

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
  model.compile(optimizer=opt)

  model.fit(x_train, y_train, epochs=1)
  
  dense3 = model.get_layer(2)
  d3_kernel, d3_bias = dense3.get_weights(model.ffmodel)
  print(d3_bias)
  d3_kernel = np.reshape(d3_kernel, (d3_kernel.shape[1], d3_kernel.shape[0]))
  print(d3_kernel)
  return model
Beispiel #18
0
def top_level_task():

    max_words = 1000
    epochs = 5

    print('Loading data...')
    (x_train, y_train), (x_test,
                         y_test) = reuters.load_data(num_words=max_words,
                                                     test_split=0.2)
    print(len(x_train), 'train sequences')
    print(len(x_test), 'test sequences')

    num_classes = np.max(y_train) + 1
    print(num_classes, 'classes')

    print('Vectorizing sequence data...')
    tokenizer = Tokenizer(num_words=max_words)
    x_train = tokenizer.sequences_to_matrix(x_train, mode='binary')
    x_test = tokenizer.sequences_to_matrix(x_test, mode='binary')
    x_train = x_train.astype('float32')
    print('x_train shape:', x_train.shape)
    print('x_test shape:', x_test.shape)

    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    print('y_train shape:', y_train.shape)

    model = Sequential()
    model.add(Input(shape=(max_words, )))
    model.add(Dense(512, activation="relu"))
    model.add(Dense(num_classes))
    model.add(Activation("softmax"))

    opt = flexflow.keras.optimizers.Adam(learning_rate=0.01)
    model.compile(optimizer=opt,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'sparse_categorical_crossentropy'])
    print(model.summary())

    model.fit(x_train,
              y_train,
              epochs=epochs,
              callbacks=[VerifyMetrics(ModelAccuracy.REUTERS_MLP)])
Beispiel #19
0
def create_teacher_model_mlp(num_classes, x_train, y_train):
    model = Sequential()
    model.add(Dense(512, input_shape=(784, ), activation="relu"))
    model.add(Dense(512, activation="relu"))
    model.add(Dense(num_classes))
    model.add(Activation("softmax"))

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'sparse_categorical_crossentropy'])

    model.fit(x_train, y_train, epochs=1)

    dense3 = model.get_layer(index=2)
    d3_kernel, d3_bias = dense3.get_weights(model.ffmodel)
    print(d3_bias)
    d3_kernel = np.reshape(d3_kernel, (d3_kernel.shape[1], d3_kernel.shape[0]))
    print(d3_kernel)
    return model
Beispiel #20
0
def create_student_model_mlp(teacher_model, num_classes, x_train, y_train):
    dense1 = teacher_model.get_layer(index=0)
    d1_kernel, d1_bias = dense1.get_weights(teacher_model.ffmodel)
    print(d1_kernel.shape, d1_bias.shape)
    dense2 = teacher_model.get_layer(index=1)
    d2_kernel, d2_bias = dense2.get_weights(teacher_model.ffmodel)

    dense3 = teacher_model.get_layer(index=2)
    d3_kernel, d3_bias = dense3.get_weights(teacher_model.ffmodel)

    model = Sequential()
    model.add(Dense(512, input_shape=(784, ), activation="relu"))
    model.add(Dense(512, activation="relu"))
    model.add(Dense(num_classes))
    model.add(Activation("softmax"))

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'sparse_categorical_crossentropy'])

    dense1s = model.get_layer(index=0)
    dense2s = model.get_layer(index=1)
    dense3s = model.get_layer(index=2)

    dense1s.set_weights(model.ffmodel, d1_kernel, d1_bias)
    dense2s.set_weights(model.ffmodel, d2_kernel, d2_bias)
    dense3s.set_weights(model.ffmodel, d3_kernel, d3_bias)

    d3_kernel, d3_bias = dense3s.get_weights(model.ffmodel)
    print(d3_kernel)
    print(d3_bias)

    model.fit(x_train,
              y_train,
              epochs=5,
              callbacks=[
                  VerifyMetrics(ModelAccuracy.MNIST_MLP),
                  EpochVerifyMetrics(ModelAccuracy.MNIST_MLP)
              ])
Beispiel #21
0
def create_student_model_cnn(teacher_model, num_classes, x_train, y_train):
  conv1 = teacher_model.get_layer(0)
  c1_kernel, c1_bias = conv1.get_weights(teacher_model.ffmodel)
  print(c1_kernel.shape, c1_bias.shape)

  conv2 = teacher_model.get_layer(1)
  c2_kernel, c2_bias = conv2.get_weights(teacher_model.ffmodel)
  
  dense1 = teacher_model.get_layer(4)
  d1_kernel, d1_bias = dense1.get_weights(teacher_model.ffmodel)
  
  dense2 = teacher_model.get_layer(5)
  d2_kernel, d2_bias = dense2.get_weights(teacher_model.ffmodel)
  
  model = Sequential()
  model.add(Conv2D(filters=32, input_shape=(1,28,28), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid"))
  model.add(Flatten())
  model.add(Dense(128, activation="relu"))
  model.add(Dense(num_classes))
  model.add(Activation("softmax"))

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
  model.compile(optimizer=opt)
  
  conv1s = model.get_layer(0)
  conv2s = model.get_layer(1)
  dense1s = model.get_layer(4)
  dense2s = model.get_layer(5)
  
  conv1s.set_weights(model.ffmodel, c1_kernel, c1_bias)
  conv2s.set_weights(model.ffmodel, c2_kernel, c2_bias)
  dense1s.set_weights(model.ffmodel, d1_kernel, d1_bias)
  dense2s.set_weights(model.ffmodel, d2_kernel, d2_bias)
  
  print(model.summary())
  

  model.fit(x_train, y_train, epochs=1)
Beispiel #22
0
def create_student_model_cnn(teacher_model, num_classes, x_train, y_train):
  conv1 = teacher_model.get_layer(index=0)
  c1_kernel, c1_bias = conv1.get_weights(teacher_model.ffmodel)
  print(c1_kernel.shape, c1_bias.shape)

  conv2 = teacher_model.get_layer(index=1)
  c2_kernel, c2_bias = conv2.get_weights(teacher_model.ffmodel)
  
  dense1 = teacher_model.get_layer(index=4)
  d1_kernel, d1_bias = dense1.get_weights(teacher_model.ffmodel)
  
  dense2 = teacher_model.get_layer(index=5)
  d2_kernel, d2_bias = dense2.get_weights(teacher_model.ffmodel)
  
  model = Sequential()
  model.add(Conv2D(filters=32, input_shape=(1,28,28), kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu"))
  model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding="valid"))
  model.add(Flatten())
  model.add(Dense(128, activation="relu", name="dense1"))
  model.add(Dense(num_classes))
  model.add(Activation("softmax"))

  opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
  model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy'])
  
  conv1s = model.get_layer(index=0)
  conv2s = model.get_layer(index=1)
  dense1s = model.get_layer(name="dense1")
  dense2s = model.get_layer(index=5)
  
  conv1s.set_weights(model.ffmodel, c1_kernel, c1_bias)
  conv2s.set_weights(model.ffmodel, c2_kernel, c2_bias)
  dense1s.set_weights(model.ffmodel, d1_kernel, d1_bias)
  dense2s.set_weights(model.ffmodel, d2_kernel, d2_bias)
  
  print(model.summary())
  
  model.fit(x_train, y_train, epochs=5, callbacks=[VerifyMetrics(ModelAccuracy.MNIST_CNN), EpochVerifyMetrics(ModelAccuracy.MNIST_CNN)])
Beispiel #23
0
def top_level_task():

    max_words = 1000
    epochs = 5

    print('Loading data...')
    (x_train, y_train), (x_test,
                         y_test) = reuters.load_data(num_words=max_words,
                                                     test_split=0.2)
    print(len(x_train), 'train sequences')
    print(len(x_test), 'test sequences')

    num_classes = np.max(y_train) + 1
    print(num_classes, 'classes')

    print('Vectorizing sequence data...')
    tokenizer = Tokenizer(num_words=max_words)
    x_train = tokenizer.sequences_to_matrix(x_train, mode='binary')
    x_test = tokenizer.sequences_to_matrix(x_test, mode='binary')
    x_train = x_train.astype('float32')
    print('x_train shape:', x_train.shape)
    print('x_test shape:', x_test.shape)

    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    print('y_train shape:', y_train.shape)

    model = Sequential()
    model.add(Dense(512, input_shape=(max_words, ), activation="relu"))
    model.add(Dense(num_classes))
    model.add(Activation("softmax"))

    opt = flexflow.keras.optimizers.Adam(learning_rate=0.01)
    model.compile(optimizer=opt)

    model.fit(x_train, y_train, epochs=epochs)
def top_level_task():
    num_classes = 10

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    print("shape: ", x_train.shape)

    #teacher
    input_tensor1 = Input(shape=(3, 32, 32), dtype="float32")

    c1 = Conv2D(filters=32,
                input_shape=(3, 32, 32),
                kernel_size=(3, 3),
                strides=(1, 1),
                padding="same",
                activation="relu")
    c2 = Conv2D(filters=32,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c3 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c4 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    d1 = Dense(512, activation="relu")
    d2 = Dense(num_classes)

    output_tensor = c1(input_tensor1)
    output_tensor = c2(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="same")(output_tensor)
    output_tensor = c3(output_tensor)
    output_tensor = c4(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = d1(output_tensor)
    output_tensor = d2(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    teacher_model = Model(input_tensor1, output_tensor)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    teacher_model.compile(
        optimizer=opt,
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy', 'sparse_categorical_crossentropy'])

    teacher_model.fit(x_train, y_train, epochs=10)

    c1_kernel, c1_bias = c1.get_weights(teacher_model.ffmodel)
    c2_kernel, c2_bias = c2.get_weights(teacher_model.ffmodel)
    c3_kernel, c3_bias = c3.get_weights(teacher_model.ffmodel)
    c4_kernel, c4_bias = c4.get_weights(teacher_model.ffmodel)
    d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel)
    d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel)
    #d2_kernel *= 0

    c2_kernel_new = np.concatenate((c2_kernel, c2_kernel), axis=1)
    print(c2_kernel.shape, c2_kernel_new.shape, c2_bias.shape)

    #student model
    input_tensor2 = Input(shape=(3, 32, 32), dtype="float32")

    sc1_1 = Conv2D(filters=32,
                   input_shape=(3, 32, 32),
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding="same",
                   activation="relu")
    sc1_2 = Conv2D(filters=32,
                   input_shape=(3, 32, 32),
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding="same",
                   activation="relu")
    sc2 = Conv2D(filters=32,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sc3 = Conv2D(filters=64,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sc4 = Conv2D(filters=64,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sd1 = Dense(512, activation="relu")
    sd2 = Dense(num_classes)

    t1 = sc1_1(input_tensor2)
    t2 = sc1_2(input_tensor2)
    output_tensor = Concatenate(axis=1)([t1, t2])
    output_tensor = sc2(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="same")(output_tensor)
    output_tensor = sc3(output_tensor)
    output_tensor = sc4(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = sd1(output_tensor)
    output_tensor = sd2(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    student_model = Model(input_tensor2, output_tensor)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    student_model.compile(
        optimizer=opt,
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy', 'sparse_categorical_crossentropy'])

    sc1_1.set_weights(student_model.ffmodel, c1_kernel, c1_bias)
    sc1_2.set_weights(student_model.ffmodel, c1_kernel, c1_bias)
    sc2.set_weights(student_model.ffmodel, c2_kernel_new, c2_bias)
    sc3.set_weights(student_model.ffmodel, c3_kernel, c3_bias)
    sc4.set_weights(student_model.ffmodel, c4_kernel, c4_bias)
    sd1.set_weights(student_model.ffmodel, d1_kernel, d1_bias)
    sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias)

    student_model.fit(x_train,
                      y_train,
                      epochs=160,
                      callbacks=[
                          VerifyMetrics(ModelAccuracy.CIFAR10_CNN),
                          EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN)
                      ])
Beispiel #25
0
def cifar_alexnet():

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    full_input_np = np.zeros((num_samples, 3, 229, 229), dtype=np.float32)
    for i in range(0, num_samples):
        image = x_train[i, :, :, :]
        image = image.transpose(1, 2, 0)
        pil_image = Image.fromarray(image)
        pil_image = pil_image.resize((229, 229), Image.NEAREST)
        image = np.array(pil_image, dtype=np.float32)
        image = image.transpose(2, 0, 1)
        full_input_np[i, :, :, :] = image
        if (i == 0):
            print(image)

    full_input_np /= 255
    y_train = y_train.astype('int32')
    full_label_np = y_train

    input_tensor = Input(batch_shape=[0, 3, 229, 229], dtype="float32")

    output = Conv2D(filters=64,
                    input_shape=(3, 229, 229),
                    kernel_size=(11, 11),
                    strides=(4, 4),
                    padding=(2, 2),
                    activation="relu")(input_tensor)
    output = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),
                          padding="valid")(output)
    output = Conv2D(filters=192,
                    kernel_size=(5, 5),
                    strides=(1, 1),
                    padding=(2, 2),
                    activation="relu")(output)
    output = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),
                          padding="valid")(output)
    output = Conv2D(filters=384,
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    activation="relu")(output)
    output = Conv2D(filters=256,
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    activation="relu")(output)
    output = Conv2D(filters=256,
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    activation="relu")(output)
    output = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),
                          padding="valid")(output)
    output = Flatten()(output)
    output = Dense(4096, activation="relu")(output)
    output = Dense(4096, activation="relu")(output)
    output = Dense(10)(output)
    output = Activation("softmax")(output)

    model = Model(input_tensor, output)

    print(model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.001)
    model.compile(optimizer=opt)

    model.fit(full_input_np, full_label_np, epochs=1)
def top_level_task():
    num_classes = 10

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    print("shape: ", x_train.shape)

    input_tensor1 = Input(shape=(3, 32, 32), dtype="float32")
    output_tensor1 = Conv2D(filters=32,
                            kernel_size=(3, 3),
                            strides=(1, 1),
                            padding=(1, 1),
                            activation="relu")(input_tensor1)
    output_tensor1 = Conv2D(filters=32,
                            kernel_size=(3, 3),
                            strides=(1, 1),
                            padding=(1, 1),
                            activation="relu")(output_tensor1)
    output_tensor1 = MaxPooling2D(pool_size=(2, 2),
                                  strides=(2, 2),
                                  padding="valid")(output_tensor1)
    model1 = Model(input_tensor1, output_tensor1)

    input_tensor2 = Input(shape=(3, 32, 32), dtype="float32")
    output_tensor2 = Conv2D(filters=64,
                            kernel_size=(3, 3),
                            strides=(1, 1),
                            padding=(1, 1),
                            activation="relu")(input_tensor2)
    output_tensor2 = Conv2D(filters=64,
                            kernel_size=(3, 3),
                            strides=(1, 1),
                            padding=(1, 1),
                            activation="relu")(output_tensor2)
    output_tensor2 = MaxPooling2D(pool_size=(2, 2),
                                  strides=(2, 2),
                                  padding="valid")(output_tensor2)
    output_tensor2 = Flatten()(output_tensor2)
    output_tensor2 = Dense(512, activation="relu")(output_tensor2)
    output_tensor2 = Dense(num_classes)(output_tensor2)
    output_tensor2 = Activation("softmax")(output_tensor2)
    model2 = Model(input_tensor2, output_tensor2)

    input_tensor3 = Input(shape=(3, 32, 32), dtype="float32")
    output_tensor3 = model1(input_tensor3)
    output_tensor3 = model2(output_tensor3)
    model = Model(input_tensor3, output_tensor3)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'sparse_categorical_crossentropy'])
    print(model.summary())

    model.fit(x_train,
              y_train,
              epochs=40,
              callbacks=[
                  VerifyMetrics(ModelAccuracy.CIFAR10_CNN),
                  EpochVerifyMetrics(ModelAccuracy.CIFAR10_CNN)
              ])
def top_level_task():
    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    full_input_np = np.zeros((num_samples, 3, 229, 229), dtype=np.float32)
    for i in range(0, num_samples):
        image = x_train[i, :, :, :]
        image = image.transpose(1, 2, 0)
        pil_image = Image.fromarray(image)
        pil_image = pil_image.resize((229, 229), Image.NEAREST)
        image = np.array(pil_image, dtype=np.float32)
        image = image.transpose(2, 0, 1)
        full_input_np[i, :, :, :] = image
        if (i == 0):
            print(image)

    full_input_np /= 255
    y_train = y_train.astype('int32')
    full_label_np = y_train

    input_tensor = Input(shape=(3, 229, 229), dtype="float32")

    output = Conv2D(filters=64,
                    input_shape=(3, 229, 229),
                    kernel_size=(11, 11),
                    strides=(4, 4),
                    padding=(2, 2),
                    activation="relu")(input_tensor)
    output = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),
                          padding="valid")(output)
    output = Conv2D(filters=192,
                    kernel_size=(5, 5),
                    strides=(1, 1),
                    padding=(2, 2),
                    activation="relu")(output)
    output = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),
                          padding="valid")(output)
    output = Conv2D(filters=384,
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    activation="relu")(output)
    output = Conv2D(filters=256,
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    activation="relu")(output)
    output = Conv2D(filters=256,
                    kernel_size=(3, 3),
                    strides=(1, 1),
                    padding=(1, 1),
                    activation="relu")(output)
    output = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),
                          padding="valid")(output)
    output = Flatten()(output)
    output = Dense(4096, activation="relu")(output)
    output = Dense(4096, activation="relu")(output)
    output = Dense(10)(output)
    output = Activation("softmax")(output)

    model = Model(input_tensor, output)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    model.compile(optimizer=opt,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'sparse_categorical_crossentropy'])
    print(model.summary())

    model.fit(full_input_np,
              full_label_np,
              epochs=160,
              callbacks=[
                  VerifyMetrics(ModelAccuracy.CIFAR10_ALEXNET),
                  EpochVerifyMetrics(ModelAccuracy.CIFAR10_ALEXNET)
              ])
Beispiel #28
0
def cifar_cnn_net2net():
    num_classes = 10

    num_samples = 10000

    (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples)

    x_train = x_train.astype('float32')
    x_train /= 255
    #x_train *= 0
    #y_train = np.random.randint(1, 9, size=(num_samples,1), dtype='int32')
    y_train = y_train.astype('int32')
    print("shape: ", x_train.shape)

    #teacher
    input_tensor1 = Input(batch_shape=[0, 3, 32, 32], dtype="float32")

    c1 = Conv2D(filters=32,
                input_shape=(3, 32, 32),
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c2 = Conv2D(filters=32,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c3 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    c4 = Conv2D(filters=64,
                kernel_size=(3, 3),
                strides=(1, 1),
                padding=(1, 1),
                activation="relu")
    d1 = Dense(512, activation="relu")
    d2 = Dense(num_classes)

    output_tensor = c1(input_tensor1)
    output_tensor = c2(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = c3(output_tensor)
    output_tensor = c4(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = d1(output_tensor)
    output_tensor = d2(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    teacher_model = Model(input_tensor1, output_tensor)

    print(teacher_model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    teacher_model.compile(optimizer=opt)

    teacher_model.fit(x_train, y_train, epochs=1)

    c1_kernel, c1_bias = c1.get_weights(teacher_model.ffmodel)
    c2_kernel, c2_bias = c2.get_weights(teacher_model.ffmodel)
    c3_kernel, c3_bias = c3.get_weights(teacher_model.ffmodel)
    c4_kernel, c4_bias = c4.get_weights(teacher_model.ffmodel)
    d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel)
    d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel)
    #d2_kernel *= 0

    c2_kernel_new = np.concatenate((c2_kernel, c2_kernel), axis=1)
    print(c2_kernel.shape, c2_kernel_new.shape, c2_bias.shape)

    #student model
    input_tensor2 = Input(batch_shape=[0, 3, 32, 32], dtype="float32")

    sc1_1 = Conv2D(filters=32,
                   input_shape=(3, 32, 32),
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding=(1, 1),
                   activation="relu")
    sc1_2 = Conv2D(filters=32,
                   input_shape=(3, 32, 32),
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding=(1, 1),
                   activation="relu")
    sc2 = Conv2D(filters=32,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sc3 = Conv2D(filters=64,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sc4 = Conv2D(filters=64,
                 kernel_size=(3, 3),
                 strides=(1, 1),
                 padding=(1, 1),
                 activation="relu")
    sd1 = Dense(512, activation="relu")
    sd2 = Dense(num_classes)

    t1 = sc1_1(input_tensor2)
    t2 = sc1_2(input_tensor2)
    output_tensor = Concatenate(axis=1)([t1, t2])
    output_tensor = sc2(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = sc3(output_tensor)
    output_tensor = sc4(output_tensor)
    output_tensor = MaxPooling2D(pool_size=(2, 2),
                                 strides=(2, 2),
                                 padding="valid")(output_tensor)
    output_tensor = Flatten()(output_tensor)
    output_tensor = sd1(output_tensor)
    output_tensor = sd2(output_tensor)
    output_tensor = Activation("softmax")(output_tensor)

    student_model = Model(input_tensor2, output_tensor)

    print(student_model.summary())

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    student_model.compile(optimizer=opt)

    sc1_1.set_weights(student_model.ffmodel, c1_kernel, c1_bias)
    sc1_2.set_weights(student_model.ffmodel, c1_kernel, c1_bias)
    sc2.set_weights(student_model.ffmodel, c2_kernel_new, c2_bias)
    sc3.set_weights(student_model.ffmodel, c3_kernel, c3_bias)
    sc4.set_weights(student_model.ffmodel, c4_kernel, c4_bias)
    sd1.set_weights(student_model.ffmodel, d1_kernel, d1_bias)
    sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias)

    student_model.fit(x_train, y_train, epochs=1)
def top_level_task():
    num_classes = 10

    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_train = x_train.astype('float32')
    x_train /= 255
    y_train = y_train.astype('int32')
    y_train = np.reshape(y_train, (len(y_train), 1))
    print("shape: ", x_train.shape)

    #teacher

    input_tensor1 = Input(shape=(784, ), dtype="float32")

    d1 = Dense(512, input_shape=(784, ), activation="relu")
    d2 = Dense(512, activation="relu")
    d3 = Dense(num_classes)

    output = d1(input_tensor1)
    output = d2(output)
    output = d3(output)
    output = Activation("softmax")(output)

    teacher_model = Model(input_tensor1, output)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    teacher_model.compile(
        optimizer=opt,
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy', 'sparse_categorical_crossentropy'])

    teacher_model.fit(x_train, y_train, epochs=10)

    d1_kernel, d1_bias = d1.get_weights(teacher_model.ffmodel)
    d2_kernel, d2_bias = d2.get_weights(teacher_model.ffmodel)
    d3_kernel, d3_bias = d3.get_weights(teacher_model.ffmodel)

    # student

    input_tensor2 = Input(shape=(784, ), dtype="float32")

    sd1_1 = Dense(512, input_shape=(784, ), activation="relu")
    sd2 = Dense(512, activation="relu")
    sd3 = Dense(num_classes)

    output = sd1_1(input_tensor2)
    output = sd2(output)
    output = sd3(output)
    output = Activation("softmax")(output)

    student_model = Model(input_tensor2, output)

    opt = flexflow.keras.optimizers.SGD(learning_rate=0.01)
    student_model.compile(
        optimizer=opt,
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy', 'sparse_categorical_crossentropy'])

    sd1_1.set_weights(student_model.ffmodel, d1_kernel, d1_bias)
    sd2.set_weights(student_model.ffmodel, d2_kernel, d2_bias)
    sd3.set_weights(student_model.ffmodel, d3_kernel, d3_bias)

    student_model.fit(x_train,
                      y_train,
                      epochs=160,
                      callbacks=[
                          VerifyMetrics(ModelAccuracy.MNIST_MLP),
                          EpochVerifyMetrics(ModelAccuracy.MNIST_MLP)
                      ])