Beispiel #1
0
def test_mflist_reference():
    import os
    import numpy as np
    import shapefile
    import flopy.modflow as fmf

    # model_ws = os.path.join('..', 'data', 'freyberg')
    # ml = fmf.Modflow.load('freyberg.nam', model_ws=model_ws)
    # make the model
    ml = fmf.Modflow()
    assert isinstance(ml, fmf.Modflow)
    perlen = np.arange(1, 20, 1)
    nstp = np.flipud(perlen) + 3
    tsmult = 1.2
    nlay = 10
    nrow, ncol = 50, 40
    botm = np.arange(0, -100, -10)
    hk = np.random.random((nrow, ncol))
    dis = fmf.ModflowDis(ml,
                         delr=100.0,
                         delc=100.0,
                         nrow=nrow,
                         ncol=ncol,
                         nlay=nlay,
                         nper=perlen.shape[0],
                         perlen=perlen,
                         nstp=nstp,
                         tsmult=tsmult,
                         top=10,
                         botm=botm,
                         steady=False)
    assert isinstance(dis, fmf.ModflowDis)
    lpf = fmf.ModflowLpf(ml, hk=hk, vka=10.0, laytyp=1)
    assert isinstance(lpf, fmf.ModflowLpf)
    pcg = fmf.ModflowPcg(ml)
    assert isinstance(pcg, fmf.ModflowPcg)
    oc = fmf.ModflowOc(ml)
    assert isinstance(oc, fmf.ModflowOc)
    ibound = np.ones((nrow, ncol))
    ibound[:, 0] = -1
    ibound[25:30, 30:39] = 0
    bas = fmf.ModflowBas(ml, strt=5.0, ibound=ibound)
    assert isinstance(bas, fmf.ModflowBas)
    rch = fmf.ModflowRch(ml, rech={0: 0.00001, 5: 0.0001, 6: 0.0})
    assert isinstance(rch, fmf.ModflowRch)
    wel_dict = {}
    wel_data = [[9, 25, 20, -200], [0, 0, 0, -400], [5, 20, 32, 500]]
    wel_dict[0] = wel_data
    wel_data2 = [[45, 20, 200], [9, 49, 39, 400], [5, 20, 32, 500]]
    wel_dict[10] = wel_data2
    wel = fmf.ModflowWel(ml, stress_period_data={0: wel_data})
    assert isinstance(wel, fmf.ModflowWel)
    ghb_dict = {0: [1, 10, 10, 400, 300]}
    ghb = fmf.ModflowGhb(ml, stress_period_data=ghb_dict)
    assert isinstance(ghb, fmf.ModflowGhb)

    test = os.path.join('temp', 'test3.shp')
    ml.export(test, kper=0)
    shp = shapefile.Reader(test)
    assert shp.numRecords == nrow * ncol
    def setup_class(cls):
        """Make a modflow model."""
        print("setting up model...")
        t0 = time.time()
        size = 100
        nlay = 10
        nper = 10
        nsfr = int((size**2) / 5)

        cls.modelname = "junk"
        cls.model_ws = "temp/t064"
        external_path = "external/"

        if not os.path.isdir(cls.model_ws):
            os.makedirs(cls.model_ws)
        if not os.path.isdir(os.path.join(cls.model_ws, external_path)):
            os.makedirs(os.path.join(cls.model_ws, external_path))

        m = fm.Modflow(cls.modelname,
                       model_ws=cls.model_ws,
                       external_path=external_path)

        dis = fm.ModflowDis(
            m,
            nper=nper,
            nlay=nlay,
            nrow=size,
            ncol=size,
            top=nlay,
            botm=list(range(nlay)),
        )

        rch = fm.ModflowRch(
            m, rech={k: 0.001 - np.cos(k) * 0.001
                     for k in range(nper)})

        ra = fm.ModflowWel.get_empty(size**2)
        well_spd = {}
        for kper in range(nper):
            ra_per = ra.copy()
            ra_per["k"] = 1
            ra_per["i"] = ((np.ones((size, size)) *
                            np.arange(size)).transpose().ravel().astype(int))
            ra_per["j"] = list(range(size)) * size
            well_spd[kper] = ra
        wel = fm.ModflowWel(m, stress_period_data=well_spd)

        # SFR package
        rd = fm.ModflowSfr2.get_empty_reach_data(nsfr)
        rd["iseg"] = range(len(rd))
        rd["ireach"] = 1
        sd = fm.ModflowSfr2.get_empty_segment_data(nsfr)
        sd["nseg"] = range(len(sd))
        sfr = fm.ModflowSfr2(reach_data=rd, segment_data=sd, model=m)
        cls.init_time = time.time() - t0
        cls.m = m
Beispiel #3
0
 def get_package(self, _mf):
     content = self.merge()
     return mf.ModflowRch(
         _mf,
         nrchop=content['nrchop'],
         ipakcb=content['ipakcb'],
         rech=content['stress_period_data'],
         irch=content['irch'],
         extension=content['extension'],
         unitnumber=content['unitnumber']
     )
Beispiel #4
0
#        [-1.,  1.,  1., ...,  1.,  1., -1.],
#        [-1., -1., -1., ..., -1., -1., -1.]]])

# set center cell in upper layer to constant head (-1)
ibound[0, Nhalf, Nhalf] = -1

# defining the start-values
# in the calculation only the -1 cells will be considered
#
# all values are set to h1
start = h1 * np.ones((N, N))
# and the center value is set to h2
start[Nhalf, Nhalf] = h2

# instantiate the modflow-basic package with iBound and startvalues
bas = mf.ModflowBas(ml, ibound=ibound, strt=start)

# set the aquifer properties with the lpf-package
lpf = mf.ModflowLpf(ml, hk=k)

# instantiation of the solver with default values
pcg = mf.ModflowPcg(ml)

# instantiation of the output control with default values
oc = mf.ModflowOc(ml)

rch = mf.ModflowRch(ml)

ml.write_input()
ml.run_model()
Beispiel #5
0
    def create_package(self, name, content):
        if name == 'mf':
            model_ws = os.path.realpath(os.path.join(self._data_folder, self._model_id, content['model_ws']))
            if not os.path.exists(model_ws):
                os.makedirs(model_ws)

            self._mf = mf.Modflow(
                modelname=content['modelname'],
                exe_name=content['exe_name'],
                version=content['version'],
                model_ws=model_ws
            )
        if name == 'dis':
            mf.ModflowDis(
                self._mf,
                nlay=content['nlay'],
                nrow=content['nrow'],
                ncol=content['ncol'],
                nper=content['nper'],
                delr=content['delr'],
                delc=content['delc'],
                laycbd=content['laycbd'],
                top=content['top'],
                botm=content['botm'],
                perlen=content['perlen'],
                nstp=content['nstp'],
                tsmult=content['tsmult'],
                steady=content['steady'],
                itmuni=content['itmuni'],
                lenuni=content['lenuni'],
                extension=content['extension'],
                unitnumber=content['unitnumber'],
                xul=content['xul'],
                yul=content['yul'],
                rotation=content['rotation'],
                proj4_str=content['proj4_str'],
                start_datetime=content['start_datetime']
            )
        if name == 'bas':
            mf.ModflowBas(
                self._mf,
                ibound=content['ibound'],
                strt=content['strt'],
                ifrefm=content['ifrefm'],
                ixsec=content['ixsec'],
                ichflg=content['ichflg'],
                stoper=content['stoper'],
                hnoflo=content['hnoflo'],
                extension=content['extension'],
                unitnumber=content['unitnumber']
            )
        if name == 'lpf':
            mf.ModflowLpf(
                self._mf,
                laytyp=content['laytyp'],
                layavg=content['layavg'],
                chani=content['chani'],
                layvka=content['layvka'],
                laywet=content['laywet'],
                ipakcb=content['ipakcb'],
                hdry=content['hdry'],
                iwdflg=content['iwdflg'],
                wetfct=content['wetfct'],
                iwetit=content['iwetit'],
                ihdwet=content['ihdwet'],
                hk=content['hk'],
                hani=content['hani'],
                vka=content['vka'],
                ss=content['ss'],
                sy=content['sy'],
                vkcb=content['vkcb'],
                wetdry=content['wetdry'],
                storagecoefficient=content['storagecoefficient'],
                constantcv=content['constantcv'],
                thickstrt=content['thickstrt'],
                nocvcorrection=content['nocvcorrection'],
                novfc=content['novfc'],
                extension=content['extension'],
                unitnumber=content['unitnumber']
            )
        if name == 'pcg':
            mf.ModflowPcg(
                self._mf,
                mxiter=content['mxiter'],
                iter1=content['iter1'],
                npcond=content['npcond'],
                hclose=content['hclose'],
                rclose=content['rclose'],
                relax=content['relax'],
                nbpol=content['nbpol'],
                iprpcg=content['iprpcg'],
                mutpcg=content['mutpcg'],
                damp=content['damp'],
                dampt=content['dampt'],
                ihcofadd=content['ihcofadd'],
                extension=content['extension'],
                unitnumber=content['unitnumber']
            )
        if name == 'oc':
            mf.ModflowOc(
                self._mf,
                ihedfm=content['ihedfm'],
                iddnfm=content['iddnfm'],
                chedfm=content['chedfm'],
                cddnfm=content['cddnfm'],
                cboufm=content['cboufm'],
                compact=content['compact'],
                stress_period_data=self.get_stress_period_data(content['stress_period_data']),
                extension=content['extension'],
                unitnumber=content['unitnumber']
            )
        if name == 'risdlkfjlv':
            mf.ModflowRiv(
                self._mf,
                ipakcb=content['ipakcb'],
                stress_period_data=content['stress_period_data'],
                dtype=content['dtype'],
                extension=content['extension'],
                unitnumber=content['unitnumber'],
                options=content['options'],
                naux=content['naux']
            )
        if name == 'wel':
            mf.ModflowWel(
                self._mf,
                ipakcb=content['ipakcb'],
                stress_period_data=content['stress_period_data'],
                dtype=content['dtype'],
                extension=content['extension'],
                unitnumber=content['unitnumber'],
                options=content['options']
            )
        if name == 'rch':
            mf.ModflowRch(
                self._mf,
                ipakcb=content['ipakcb'],
                nrchop=content['nrchop'],
                rech=content['rech'],
                extension=content['extension'],
                unitnumber=content['unitnumber']
            )
        if name == 'chd':
            mf.ModflowChd(
                self._mf,
                stress_period_data=content['stress_period_data'],
                dtype=content['dtype'],
                options=content['options'],
                extension=content['extension'],
                unitnumber=content['unitnumber']
            )

        if name == 'ghb':
            mf.ModflowGhb(
                self._mf,
                ipakcb=content['ipakcb'],
                stress_period_data=content['stress_period_data'],
                dtype=content['dtype'],
                options=content['options'],
                extension=content['extension'],
                unitnumber=content['unitnumber']
            )
Beispiel #6
0
laycon = 1  # layer type, confined (0), unconfined (1), constant T, variable S (2), variable T, variable S (default is 3)
bcf = mf.ModflowBcf(m, hy=hy, sf1=sf, laycon=1)

# BAS package (Basic Package)
ibound = np.ones((nlay, nrow, ncol))  # # active cells
ibound[:, :, 0] = -1  # Set every first element of every column to -1
ibound[:, :, -1] = -1  # Set every last element of every column to -1
strt = 0 * np.ones(
    (nrow, ncol)
)  # in the calculation only the -1 cells will be considered (all values can be set to 0)
bas = mf.ModflowBas(m, ibound=ibound, strt=strt)

# setting up recharge data and recharge package
recharge_data = 0.250  # recharge flux mm/year (default is 1.e-3)
nrchop = 1  # optional code (1: to top grid layer only; 2: to layer defined in irch 3: to highest active cell)
rch = mf.ModflowRch(m, nrchop=nrchop, rech=recharge_data)

# setting up the well package with stress periods
pumping_rate = -4e+10  # m^3 / year
lrcq = {0: [[0, 5, 6, 0.]], 1: [[0, 5, 6, -4e+10]]}
wel = mf.ModflowWel(m, stress_period_data=lrcq)

# instantiation of the solver with default values
pcg = mf.ModflowPcg(m)  # pre-conjugate gradient solver

# instantiation of the output control with default values
oc = mf.ModflowOc(m)  # output control

timeStartWritingInput = datetime.now()
ml.write_input()
timeStartRunningModel = datetime.now()
Beispiel #7
0
def main():
    '''
    This is the main function.
    '''

    # Package all the required file paths into the Paths object
    mfPaths = Paths()

    # Package all the required framework specifications into the mfFrame object
    mfFrame = Frame(Paths=mfPaths, dx_dy=dx_dy)

    if build_from_gis:

        # Build the model framework ASCII files from the GIS layers. Note that this
        # requires a GDAL installation.  If you don't want to get into that you
        # can skip this step and simply build the model from the ASCII files that I've
        # already created.
        mfFrame.build_frame(Paths=mfPaths)
    # ---------------------------------------------
    # ---------------------------------------------
    # Now use Flopy to build the MODFLOW model packages
    # ---------------------------------------------
    # ---------------------------------------------

    start_dir = os.getcwd()
    os.chdir(mfPaths.modflow_dir
             )  # This is simplest if done inside the MODFLOW directory

    # Initialize a Flopy model object. This is the base class around which the model
    # packages are built.
    Modflow = mf.Modflow(mfFrame.model_name,
                         external_path='./',
                         version=mfPaths.mf_version)

    # The .oc ('output control') package specifies how the model output is written.
    # This model includes a single steady state stress period. Save the
    # distribution of heads as well as the flow budget/mass balance to binaries.
    # These can be plotted or converted to rasters (the current version of the script
    # doesn't do any post-processing.)
    oc = mf.ModflowOc(Modflow,
                      stress_period_data={
                          (0, 0): ['SAVE HEAD', 'SAVE BUDGET']
                      })

    # The .dis and .bas packages define the model framework. I've already defined
    # the framework attributes using the mfFrame object and simply pass those
    # attributes to the constructor.
    dis = mf.ModflowDis(Modflow,mfFrame.nlay,mfFrame.nrow,mfFrame.ncol,\
                         delr=mfFrame.delr,delc=mfFrame.delc,\
                         top=mfFrame.top,botm=mfFrame.bottom)

    bas = mf.ModflowBas(Modflow,
                        ibound=mfFrame.ibound,
                        strt=mfFrame.top,
                        hnoflo=mfFrame.hnoflo)

    # The .upw package describes the system properties (e.g., transmissivity/conductivity).
    # For this model I simply give it a constant hydraulic conductivity field. This model
    # converges but I have no idea how physically realistic it is. If you would
    # like to make it more physically realistic (e.g., try to fit head or discharge
    # data) you would need to estimate the hydraulic conductivity field via
    # calibration/inverse modeling
    hk = np.ones(np.shape(mfFrame.ibound))
    upw = mf.ModflowUpw(Modflow, laytyp=mfFrame.laytyp, hk=hk, ipakcb=53)

    # The .nwt package defines the solver specs. Just use the defaults.
    nwt = mf.ModflowNwt(Modflow)

    # RECHARGE INPUTS TO THE SYSTEM
    # -----------------------------
    # The .rch packages specifies recharge/precipitation inputs to the water table.
    # Remember that I have already generated an array from the GIS layer and attached
    # it to the mfFrame object.
    rch = mf.ModflowRch(Modflow, nrchop=3, rech={0: mfFrame.rch}, ipakcb=53)

    # BASEFLOW DISCHARGE FROM THE SYSTEM
    # ----------------------------------
    # The .drn package is one method of simulating the discharge of groundwater as
    # base-flow in streams in rivers.  Define every landsurface cell as a drain
    # in order to allow the discharge network to emerge from topography.
    drn_stages = mfFrame.top
    drn_stages[mfFrame.ibound.squeeze() <= 0] = np.nan
    drn_input = build_drain_input(mfFrame=mfFrame, stages=drn_stages)

    drn = mf.ModflowDrn(Modflow, stress_period_data=drn_input, ipakcb=53)

    # Now write the files.  Flopy can also run the model if you tell it where the
    # binary is, but if I understood your method correctly you will be invoking something
    # from hydroshare. For convenience I am writing a windows .bat file that
    # can be used to run the model.
    Modflow.write_input()
    os.chdir(start_dir)

    with open(mfPaths.mf_bat_file, 'w') as fout:
        fout.write('%s %s' % (binary_path, os.path.basename(mfPaths.nam_file)))

    folder = mfPaths.scratch_dir
    for the_file in os.listdir(folder):
        file_path = os.path.join(folder, the_file)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
        except Exception as e:
            print(e)

    folder = mfPaths.model_frame_dir
    for the_file in os.listdir(folder):
        file_path = os.path.join(folder, the_file)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
        except Exception as e:
            print(e)

    folder = mfPaths.data_dir
    for the_file in os.listdir(folder):
        file_path = os.path.join(folder, the_file)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
        except Exception as e:
            print(e)

    return
 def get_package(self, _mf):
     content = self.merge()
     return mf.ModflowRch(_mf, **content)
Beispiel #9
0
def calculate_model(z1_hk, z2_hk, z3_hk):
    # Z1_hk = 15  # 3<Z1_hk<15
    # Z2_hk = 15  # 3<Z2_hk<15
    # Z3_hk = 3  # 3<Z3_hk<15

    hobs = [
        [0, 20, 10, 69.52],
        [0, 40, 10, 71.44],
        [0, 60, 10, 72.99],
        [0, 80, 10, 73.86],
        [0, 20, 45, 58.73],
        [0, 40, 45, 50.57],
        [0, 60, 45, 54.31],
        [0, 80, 45, 58.06],
        [0, 20, 80, 56.31],
        [0, 40, 80, 52.32],
        [0, 60, 80, 46.35],
        [0, 80, 80, 29.01],
        [0, 20, 100, 57.24],
        [0, 40, 100, 54.24],
        [0, 60, 100, 39.48],
        [0, 80, 100, 48.47],
    ]

    model_path = os.path.join('_model')

    if os.path.exists(model_path):
        shutil.rmtree(model_path)

    modelname = 'parEstMod'

    version = 'mf2005'
    exe_name = 'mf2005'
    if platform.system() == 'Windows':
        exe_name = 'mf2005.exe'

    ml = mf.Modflow(modelname=modelname,
                    exe_name=exe_name,
                    version=version,
                    model_ws=model_path)

    nlay = 1
    nrow = 90
    ncol = 120

    area_width_y = 9000
    area_width_x = 12000

    delc = area_width_x / ncol
    delr = area_width_y / nrow

    nper = 1

    top = 100
    botm = 0

    dis = mf.ModflowDis(ml,
                        nlay=nlay,
                        nrow=nrow,
                        ncol=ncol,
                        delr=delr,
                        delc=delc,
                        top=top,
                        botm=botm,
                        nper=nper,
                        steady=True)

    ibound = 1
    strt = 100
    bas = mf.ModflowBas(ml, ibound=ibound, strt=strt)

    mask_arr = np.zeros((nlay, nrow, ncol))
    mask_arr[:, :, 0] = 80
    mask_arr[:, :, -1] = 60

    ghb_spd = {0: []}
    for layer_id in range(nlay):
        for row_id in range(nrow):
            for col_id in range(ncol):
                if mask_arr[layer_id][row_id][col_id] > 0:
                    ghb_spd[0].append([
                        layer_id, row_id, col_id,
                        mask_arr[layer_id][row_id][col_id], 200
                    ])

    ghb = mf.ModflowGhb(ml, stress_period_data=ghb_spd)

    rch = 0.0002
    rech = {}
    rech[0] = rch
    rch = mf.ModflowRch(ml, rech=rech, nrchop=3)

    welSp = {}
    welSp[0] = [
        [0, 20, 20, -20000],
        [0, 40, 40, -20000],
        [0, 60, 60, -20000],
        [0, 80, 80, -20000],
        [0, 60, 100, -20000],
    ]

    wel = mf.ModflowWel(ml, stress_period_data=welSp)

    hk = np.zeros((nlay, nrow, ncol))
    hk[:, :, 0:40] = z1_hk
    hk[:, :, 40:80] = z2_hk
    hk[:, :, 80:120] = z3_hk

    lpf = mf.ModflowLpf(ml, hk=hk, layavg=0, layvka=0, sy=0.3, ipakcb=53)

    pcg = mf.ModflowPcg(ml, rclose=1e-1)
    oc = mf.ModflowOc(ml)

    ml.write_input()
    ml.run_model(silent=True)
    hds = fu.HeadFile(os.path.join(model_path, modelname + '.hds'))
    times = hds.get_times()

    response = []

    for hob in hobs:
        observed = hob[3]
        calculated = hds.get_data(totim=times[-1])[hob[0]][hob[1]][hob[2]]
        response.append(observed - calculated)

    return json.dumps(response)
Beispiel #10
0
                         nrow=nrow,
                         ncol=ncol,
                         laycbd=0,
                         delr=delr,
                         delc=delc,
                         top=botm[0],
                         botm=botm[1:],
                         nper=nper,
                         perlen=perlen,
                         nstp=nstp,
                         steady=steady)
 bas = mf.ModflowBas(ml, ibound=ibound, strt=ihead)
 lpf = mf.ModflowLpf(ml, laytyp=laytyp, hk=hk, vka=vka)
 wel = mf.ModflowWel(ml, stress_period_data=base_well_data)
 ghb = mf.ModflowGhb(ml, stress_period_data=ghb_data)
 rch = mf.ModflowRch(ml, rech=rch_data)
 swi = mf.ModflowSwi2(ml,
                      nsrf=1,
                      istrat=1,
                      toeslope=toeslope,
                      tipslope=tipslope,
                      nu=nu,
                      zeta=z,
                      ssz=ssz,
                      isource=iso,
                      nsolver=1,
                      adaptive=adaptive,
                      nadptmx=nadptmx,
                      nadptmn=nadptmn,
                      nobs=nobs,
                      iswiobs=iswiobs,
Beispiel #11
0
                    Ny,
                    Nx,
                    delr=dx,
                    delc=dy,
                    top=zTop,
                    botm=zBot,
                    laycbd=LAYCBD,
                    nper=NPER,
                    perlen=PERLEN,
                    nstp=NSTP,
                    steady=STEADY)
bas = fm.ModflowBas(mf, ibound=IBOUND, strt=STRTHD)
lpf = fm.ModflowLpf(mf, hk=HK, vka=VKA, sy=SY, ss=SS, laytyp=LAYTYP, vkcb=VKCB)
ghb = fm.ModflowGhb(mf, stress_period_data=GHB)
wel = fm.ModflowWel(mf, stress_period_data=WEL)
rch = fm.ModflowRch(mf, nrchop=3, rech=RECH)
evt = fm.ModflowEvt(mf, nevtop=3, evtr=EVTR)
oc = fm.ModflowOc(mf, stress_period_data=OC, compact=True)
pcg = fm.ModflowPcg(mf)

#%% Write the model input files and running MODFLOW
mf.write_input()

success, mfoutput = mf.run_model(silent=False, pause=False)

print('Running success = {}'.format(success))

if not success:
    raise Exception('MODFLOW did not terminate normally.')

#%% SHOWING RESULTS
Beispiel #12
0
                    steady=STEADY)
bas = fm.ModflowBas(mf, ibound=IBOUND, strt=STRTHD)
lpf = fm.ModflowLpf(mf,
                    hk=HK,
                    vka=VKA,
                    chani=[1.e-20, 1.e-20],
                    sy=SY,
                    ss=SS,
                    laytyp=LAYTYP,
                    vkcb=VKCB,
                    ipakcb=53)
ghb = fm.ModflowGhb(mf, stress_period_data=GHB, ipakcb=53)
riv = fm.ModflowRiv(mf, stress_period_data=RIV, ipakcb=53)
drn = fm.ModflowDrn(mf, stress_period_data=DRN, ipakcb=53)
wel = fm.ModflowWel(mf, stress_period_data=SEEP, ipakcb=53)
rch = fm.ModflowRch(mf, nrchop=3, rech=RECH, ipakcb=53)
evt = fm.ModflowEvt(mf, nevtop=3, evtr=EVTR, ipakcb=53)
oc = fm.ModflowOc(mf, stress_period_data=OC, compact=True)
#pcg = fm.ModflowPcg(mf, mxiter=200, iter1=200, hclose=0.001, rclose=0.001)
sms = fm.ModflowSms(mf)  #, mxiter=200, iter1=200, hclose=0.001, rclose=0.001)

#%% Write the model input files and run MODFLOW
mf.write_input()
success, mfoutput = mf.run_model(silent=False, pause=False)

print('Running success = {}'.format(success))
if not success:
    raise Exception('MODFLOW did not terminate normally.')

#%% SHOWING RESULTS
#to 1m (delc = 1). The latter requires specification
#of the layer, row, column, and injection rate of the
#well for each stress period. The layers, rows, columns,
#and the stress period are numbered (consistent with
#Python's zero-based numbering convention) starting at
#0. The required data are stored in a Python dictionary
#(lrcQ in the code below), which is used in FloPy to
#store data that can vary by stress period. The lrcQ
#dictionary specifies that two wells (one in cell 1, 1,
#51 and one in cell 1, 1, 151), each with a rate of
#-1 m3/d, will be active for the first stress period.
#Because this is a steady-state model, there is only
#one stress period and therefore only one entry in the
#dictionary.

fpm.ModflowRch(model, rech=0.001)
lrcQ = {0: [[0, 0, 50, -1], [0, 0, 150, -1]]}
fpm.ModflowWel(model, stress_period_data=lrcQ)

#5. The preconditioned conjugate-gradient (PCG) solver,
#using the default settings, is specified to solve the
#model.

fpm.ModflowPcg(model)

#6. The frequency and type of output that MODFLOW
#writes to an output file is specified with the output
#control (OC) package. In this case, the budget is printed
#and heads are saved (the default), so no arguments are
#needed.