def pmpos(linear):
    if args.nbody:
        print('Nobdy sim')
        state = lpt_init(linear, a0=a0, order=args.lpt_order)
        final_state = nbody(state,  stages, nc)
    else:
        print('ZA/2LPT sim')
        final_state = lpt_init(linear, a0=af, order=args.lpt_order)
    tfinal_field = cic_paint(tf.zeros_like(linear), final_state[0])
    return tfinal_field, final_state[0]
Beispiel #2
0
    def forward(self, linear):
        if self.nbody:
            print('Nobdy sim')
            state = lpt_init(linear, a0=self.a0, order=self.lpt_order)
            final_state = nbody(state, self.stages, self.nc)
        else:
            print('ZA/2LPT sim')
            final_state = lpt_init(linear, a0=self.af, order=self.lpt_order)

        tfinal_field = cic_paint(tf.zeros_like(linear), final_state[0])
        return tfinal_field
Beispiel #3
0
def pm_data_test(dummy):
    print("PM graph")
    linear = flowpm.linear_field(nc, bs, ipklin, batch_size=world_size)
    if args.nbody:
        print('Nobdy sim')
        state = lpt_init(linear, a0=a0, order=args.lpt_order)
        final_state = nbody(state, stages, nc)
    else:
        print('ZA/2LPT sim')
        final_state = lpt_init(linear, a0=af, order=args.lpt_order)
    tfinal_field = cic_paint(tf.zeros_like(linear), final_state[0])
    return linear, tfinal_field
Beispiel #4
0
    def pm(self, linear):
        args = self.args
        nc, bs = args.nc, args.bs

        if args.nbody:
            print('Nobdy sim')
            state = lpt_init(linear, a0=args.a0, order=args.lpt_order)
            final_state = nbody(state, args.stages, nc)
        else:
            print('ZA/2LPT sim')
            final_state = lpt_init(linear, a0=args.af, order=args.lpt_order)
        tfinal_field = cic_paint(tf.zeros_like(linear), final_state[0])
        return tfinal_field
Beispiel #5
0
    def sample(self, linear):
        if self.nbody:
            print('Nobdy sim')
            state = lpt_init(linear, a0=self.a0, order=self.lpt_order)
            final_state = nbody(state, self.stages, self.nc)
        else:
            print('ZA/2LPT sim')
            final_state = lpt_init(linear, a0=self.af, order=self.lpt_order)

        tfinal_field = cic_paint(tf.zeros_like(linear), final_state[0])
        galmean = tfp.distributions.Poisson(rate=self.plambda *
                                            (1 + tfinal_field))
        sample = galmean.sample()
        return sample
    def recon_prototype(linearflat):
        """
        """
        linear = tf.reshape(linearflat, data.shape)
        #

        #loss = tf.reduce_sum(tf.square(linear - minimum))
        state = lpt_init(linear, a0=0.1, order=1)
        final_state = nbody(state, stages, FLAGS.nc)
        final_field = cic_paint(tf.zeros_like(linear), final_state[0])
        #final_field = pmgraph(linear)
        base = final_field

        if FLAGS.anneal:
            Rsmsq = tf.multiply(Rsm * bs / nc, Rsm * bs / nc)
            smwts = tf.exp(tf.multiply(-kmesh**2, Rsmsq))
            basek = r2c3d(base, norm=nc**3)
            basek = tf.multiply(basek, tf.cast(smwts, tf.complex64))
            base = c2r3d(basek, norm=nc**3)

        galmean = tfp.distributions.Poisson(rate=plambda * (1 + base))
        logprob = -tf.reduce_sum(galmean.log_prob(data))
        #logprob = tf.multiply(logprob, 1/nc**3, name='logprob')

        #Prior
        lineark = r2c3d(linear, norm=nc**3)
        priormesh = tf.square(tf.cast(tf.abs(lineark), tf.float32))
        prior = tf.reduce_sum(tf.multiply(priormesh, 1 / priorwt))
        #prior = tf.multiply(prior, 1/nc**3, name='prior')
        #
        loss = logprob + prior

        grad = tf.gradients(loss, linearflat)
        print(grad)
        return loss, grad[0]
def val_and_grad(Omega_c, whitec):
  params = tf.stack([Omega_c])
  with tf.GradientTape() as tape:
    tape.watch(params)
    cosmology = flowpm.cosmology.Planck15(Omega_c=params[0])
    k = tf.constant(np.logspace(-4, 1, 256), dtype=tf.float32)
    pk = tfpower.linear_matter_power(cosmology, k)
    pk_fun = lambda x: tf.cast(
        tf.reshape(
            interpolate.interp_tf(
                tf.reshape(tf.cast(x, tf.float32), [-1]), k, pk), x.shape), tf.
        complex64)
    initial_conditions = whitenoise_to_linear([nc, nc, nc],
                                              [box_size, box_size, box_size],
                                              whitec,
                                              pk_fun,
                                              seed=100,
                                              batch_size=1)

    state = flowpm.lpt_init(cosmology, initial_conditions, 0.1)

    final_state = flowpm.nbody(cosmology, state, stages, [nc, nc, nc])
    final_field = flowpm.cic_paint(
        tf.zeros_like(initial_conditions), final_state[0])
    final_field = tf.reshape(final_field, [nc, nc, nc])
    loss = tf.reduce_mean(final_field**2)
  return loss, tape.gradient(loss, params)
Beispiel #8
0
def pm(lin, params):
    """ FastPM forward simulation
  """
    state = flowpm.lpt_init(lin, a0=params['a0'])
    final_state = flowpm.nbody(state, params['stages'], params['nc'])
    final_field = flowpm.cic_paint(tf.zeros_like(lin), final_state[0])
    return final_field
Beispiel #9
0
    def recon_prototype(linear):
        """
        """
        
        linear = tf.reshape(linear, minimum.shape)
        #loss = tf.reduce_sum(tf.square(linear - minimum)) 

        state = lpt_init(linear, a0=0.1, order=1)
        final_state = nbody(state,  stages, FLAGS.nc)
        final_field = cic_paint(tf.zeros_like(linear), final_state[0])

        residual = final_field - data.astype(np.float32)
        base = residual
##        Rsmsq = tf.multiply(Rsm*bs/nc, Rsm*bs/nc)
##        smwts = tf.exp(tf.multiply(-kmesh**2, Rsmsq))
##        basek = r2c3d(base, norm=nc**3)
##        basek = tf.multiply(basek, tf.cast(smwts, tf.complex64))
##        base = c2r3d(basek, norm=nc**3)   
####    #
        chisq = tf.multiply(base, base)
        chisq = tf.reduce_sum(chisq)
        chisq = tf.multiply(chisq, 1/nc**3, name='chisq')

        #Prior
        lineark = r2c3d(linear, norm=nc**3)
        priormesh = tf.square(tf.cast(tf.abs(lineark), tf.float32))
        prior = tf.reduce_sum(tf.multiply(priormesh, 1/priorwt))
        prior = tf.multiply(prior, 1/nc**3, name='prior')
        #
        loss = chisq + prior

        return loss
Beispiel #10
0
    def forward(self, linear):

        b1, b2 = self.bias[0], self.bias[1]
        if self.nbody:
            print('Nobdy sim')
            state = lpt_init(linear, a0=self.a0, order=self.lpt_order)
            final_state = nbody(state, self.stages, self.nc)
        else:
            print('ZA/2LPT sim')
            final_state = lpt_init(linear, a0=self.af, order=self.lpt_order)
        #final_field = cic_paint(tf.zeros_like(linear), final_state[0])
        fpos = final_state[0]
        w0 = tf.reshape(linear, (linear.shape[0], -1))
        w0 = w0 - tf.expand_dims(tf.reduce_mean(w0, 1), -1)
        w2 = w0 * w0
        w2 = w2 - tf.expand_dims(tf.reduce_mean(w2, 1), -1)
        weight = b1 * w0 + b2 * w2
        bmodel = cic_paint(tf.zeros_like(linear), fpos, weight=weight)
        return bmodel
Beispiel #11
0
    def recon_prototype(x0=None):
        """
        """       
#        linear = tf.get_variable('linmesh', shape=(1, nc, nc, nc), dtype=tf.float32,
#                             initializer=tf.random_normal_initializer(), trainable=True)
        if x0 is None:
            linear = tf.get_variable('linmesh', shape=(1, nc, nc, nc), dtype=tf.float32,
                             initializer=tf.random_normal_initializer(), trainable=True)
        else:
            linear = tf.get_variable('linmesh', shape=(1, nc, nc, nc), dtype=tf.float32,
                             initializer=tf.constant_initializer(x0), trainable=True)

        state = lpt_init(linear, a0=0.1, order=1)
        final_state = nbody(state,  stages, FLAGS.nc)
        final_field = cic_paint(tf.zeros_like(linear), final_state[0])
        base = final_field

        if FLAGS.anneal:
            print('\nAdd annealing graph\n')
            Rsmsq = tf.multiply(Rsm*bs/nc, Rsm*bs/nc)
            smwts = tf.exp(tf.multiply(-kmesh**2, Rsmsq))
            basek = r2c3d(base, norm=nc**3)
            basek = tf.multiply(basek, tf.cast(smwts, tf.complex64))
            base = c2r3d(basek, norm=nc**3)   

        galmean = tfp.distributions.Poisson(rate = plambda * (1 + base))
        sample = galmean.sample()
        logprob = -tf.reduce_sum(galmean.log_prob(data))
        #logprob = tf.multiply(logprob, 1/nc**3, name='logprob')
        
        #Prior
        lineark = r2c3d(linear, norm=nc**3)
        priormesh = tf.square(tf.cast(tf.abs(lineark), tf.float32))
        prior = tf.reduce_sum(tf.multiply(priormesh, 1/priorwt))
        #prior = tf.multiply(prior, 1/nc**3, name='prior')
        #
        loss = logprob + prior

        #opt = tf.train.GradientDescentOptimizer(learning_rate=0.1)
        opt = tf.train.AdamOptimizer(learning_rate=FLAGS.lr)

        #step = tf.Variable(0, trainable=False)
        #schedule = tf.optimizers.schedules.PiecewiseConstantDecay(
        #    [10000, 15000], [1e-0, 1e-1, 1e-2])
        ## lr and wd can be a function or a tensor
        #lr = 1e-1 * schedule(step)
        #wd = lambda: 1e-4 * schedule(step)
        #opt = tfa.optimizers.AdamW(learning_rate=FLAGS.lr, weight_decay=1e-1)

        # Compute the gradients for a list of variables.
        grads_and_vars = opt.compute_gradients(loss, [linear])
        print("\ngradients : ", grads_and_vars)
        update_ops = opt.apply_gradients(grads_and_vars)

        return linear, sample, update_ops, loss, logprob, prior
Beispiel #12
0
def pm_poisson():
    print("PM graph")
    linear = flowpm.linear_field(nc, bs, ipklin, batch_size=batch_size)
    if args.nbody:
        print('Nobdy sim')
        state = lpt_init(linear, a0=a0, order=args.lpt_order)
        final_state = nbody(state,  stages, nc)
    else:
        print('ZA/2LPT sim')
        final_state = lpt_init(linear, a0=af, order=args.lpt_order)
    tfinal_field = cic_paint(tf.zeros_like(linear), final_state[0])
    base = tfinal_field
    if Rsm != 0:
         basek = r2c3d(tfinal_field, norm=nc**3)
         basek = tf.multiply(basek, tf.cast(smwts, tf.complex64))
         base = c2r3d(basek, norm=nc**3)

    galmean = tfp.distributions.Poisson(rate = plambda * (1 + base))
    result = galmean.sample()
    return linear, tfinal_field, result, base
def test_save_state():
    """
  Tests the BigFile saving function
  """
    klin = np.loadtxt('flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)
    a0 = 0.1
    nc = [16, 16, 16]
    boxsize = [100., 100., 100.]
    cosmo = flowpm.cosmology.Planck15()

    initial_conditions = flowpm.linear_field(
        nc,  # size of the cube
        boxsize,  # Physical size of the cube
        ipklin,  # Initial powerspectrum
        batch_size=2)

    # Sample particles
    state = flowpm.lpt_init(cosmo, initial_conditions, a0)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filename = tmpdirname + '/testsave'
        save_state(cosmo, state, a0, nc, boxsize, filename)

        # Now try to reload the information using BigFile
        bf = bigfile.BigFile(filename)

        # Testing recovery of header
        header = bf['Header']
        assert_allclose(np.array(header.attrs['NC']), np.array(nc))
        assert_allclose(np.array(header.attrs['BoxSize']), np.array(boxsize))
        assert_allclose(np.array(header.attrs['OmegaCDM']),
                        np.array(cosmo.Omega_c))
        assert_allclose(np.array(header.attrs['OmegaB']),
                        np.array(cosmo.Omega_b))
        assert_allclose(np.array(header.attrs['OmegaK']),
                        np.array(cosmo.Omega_k))
        assert_allclose(np.array(header.attrs['h']), np.array(cosmo.h))
        assert_allclose(np.array(header.attrs['Sigma8']),
                        np.array(cosmo.sigma8))
        assert_allclose(np.array(header.attrs['w0']), np.array(cosmo.w0))
        assert_allclose(np.array(header.attrs['wa']), np.array(cosmo.wa))
        assert_allclose(np.array(header.attrs['Time']), np.array(a0))

        # Testing recovery of data
        pos = bf['1/Position']
        assert_allclose(pos[:], state[0, 1].numpy() / nc[0] * boxsize[0])
        vel = bf['1/Velocity']
        assert_allclose(vel[:], state[1, 1].numpy() / nc[0] * boxsize[0])

        # Closing file
        bf.close()
def main(_):
    cosmology = flowpm.cosmology.Planck15()

    # Compute the k vectora that will be needed in the PGD fit
    k, _ = flowpm.power_spectrum(tf.zeros([1] + [FLAGS.nc] * 3),
                                 boxsize=np.array([FLAGS.box_size] * 3),
                                 kmin=np.pi / FLAGS.box_size,
                                 dk=2 * np.pi / FLAGS.box_size)

    # Create some initial conditions
    klin = tf.constant(np.logspace(-4, 1, 512), dtype=tf.float32)
    pk = linear_matter_power(cosmology, klin)
    pk_fun = lambda x: tf.cast(
        tf.reshape(
            interpolate.interp_tf(tf.reshape(tf.cast(x, tf.float32), [-1]),
                                  klin, pk), x.shape), tf.complex64)

    initial_conditions = flowpm.linear_field(
        [FLAGS.nc, FLAGS.nc, FLAGS.nc],
        [FLAGS.box_size, FLAGS.box_size, FLAGS.box_size],
        pk_fun,
        batch_size=FLAGS.batch_size)

    initial_state = flowpm.lpt_init(cosmology, initial_conditions,
                                    FLAGS.a_init)
    stages = np.linspace(FLAGS.a_init, 1., FLAGS.nsteps, endpoint=True)

    print('Starting simulation')
    state, scale_factors, pgdparams = fit_nbody(cosmology,
                                                initial_state,
                                                stages,
                                                [FLAGS.nc, FLAGS.nc, FLAGS.nc],
                                                pm_nc_factor=FLAGS.B)
    print('Simulation done')

    pickle.dump(
        {
            'B': FLAGS.B,
            'nsteps': FLAGS.nsteps,
            'params': pgdparams,
            'scale_factors': scale_factors,
            'cosmology': cosmology.to_dict(),
            'boxsize': FLAGS.box_size,
            'nc': FLAGS.nc
        }, open(FLAGS.filename, "wb"))
Beispiel #15
0
def test_convergence_Born(return_results=False):
    """ This function tests that given a set of density planes, 
  both lenstools and flowpm recover the same convergence maps in
  angular coordinates.
  """
    klin = np.loadtxt(data_path + '/flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt(data_path + '/flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)

    cosmo = flowpm.cosmology.Planck15()

    a0 = 0.9

    # Create a state vector
    initial_conditions = flowpm.linear_field([nc, nc, 10 * nc],
                                             [bs, bs, 10 * bs],
                                             ipklin,
                                             batch_size=2)
    state = flowpm.lpt_init(cosmo, initial_conditions, a0)

    r = tf.linspace(0., 10 * bs, 11)
    r_center = 0.5 * (r[1:] + r[:-1])
    a_center = flowpm.background.a_of_chi(cosmo, r_center)

    constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2

    # To make it convenient to access simulation properties in lenstools
    # let's quicly export and reload the sim
    # TODO: remove the need for this!
    flowpm.io.save_state(cosmo,
                         state,
                         a0, [nc, nc, 10 * nc], [bs, bs, 10 * bs],
                         'snapshot_born_testing',
                         attrs={'comoving_distance': r_center[0]})

    # Reload the snapshot with lenstools
    snapshot = FlowPMSnapshot.open('snapshot_born_testing')

    # Get some density planes and create lenstool tracer
    lensplanes = []
    tracer = lt.simulations.RayTracer(lens_type=lt.simulations.DensityPlane)
    for i in range(len(r_center)):
        plane = flowpm.raytracing.density_plane(
            state, [nc, nc, 10 * nc],
            r_center[i] / bs * nc,
            width=nc,
            plane_resolution=plane_resolution)
        r, a, p = r_center[i], a_center[i], plane[0]
        lensplanes.append((r, a, plane))

        density_normalization = bs * r / a

        # We upsample the lensplanes before giving them to lenstools because
        # lentools is using a weird kind of interpolation when converting from
        # comoving coordinates to angular coords. with a larger
        p = tf.image.resize(
            tf.reshape(p, [1, plane_resolution, plane_resolution, 1]),
            [2048, 2048])

        p = (p[0, :, :, 0] * constant_factor * density_normalization).numpy()
        p = p - np.mean(p)
        lt_plane = lt.simulations.DensityPlane(
            p,
            angle=snapshot.header["box_size"],
            redshift=1 / a - 1,
            cosmology=snapshot.cosmology)
        tracer.addLens(lt_plane)

    # Adding dummy lensplane at the end
    tracer.addLens(
        lt.simulations.DensityPlane(np.zeros((2048, 2048)),
                                    angle=snapshot.header["box_size"],
                                    redshift=0.99,
                                    cosmology=snapshot.cosmology))
    tracer.addLens(
        lt.simulations.DensityPlane(np.zeros((2048, 2048)),
                                    angle=snapshot.header["box_size"],
                                    redshift=2,
                                    cosmology=snapshot.cosmology))
    tracer.reorderLenses()

    # Create an array of coordinates at which to retrieve the convernge maps
    xgrid, ygrid = np.meshgrid(
        np.linspace(0, field, npix, endpoint=False),  # range of X coordinates
        np.linspace(0, field, npix, endpoint=False))  # range of Y coordinates

    coords = np.stack([xgrid, ygrid], axis=0) * u.deg
    c = coords.reshape([2, -1]).T

    # Compute convergence map with lenstool
    lt_map = tracer.convergenceBorn(coords, z=1.0)

    # Compute convergemce map with flowpm
    fpm_map = flowpm.raytracing.convergenceBorn(cosmo,
                                                lensplanes,
                                                bs / nc,
                                                bs,
                                                c.to(u.rad),
                                                z_source=tf.ones([1]),
                                                field_npix=npix)

    # Comparing the final maps
    assert_allclose(lt_map,
                    fpm_map[0].numpy().reshape([npix, npix, -1])[:, :, -1],
                    atol=5e-4)

    if return_results:
        return lt_map, fpm_map
Beispiel #16
0
def test_density_plane(return_results=False):
    """ Tests cutting density planes from snapshots against lenstools
  """
    klin = np.loadtxt(data_path + '/flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt(data_path + '/flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)

    cosmo = flowpm.cosmology.Planck15()

    a0 = 0.9
    r0 = flowpm.background.rad_comoving_distance(cosmo, a0)

    # Create a state vector
    initial_conditions = flowpm.linear_field(nc, bs, ipklin, batch_size=2)
    state = flowpm.lpt_init(cosmo, initial_conditions, a0)

    # Export the snapshot
    flowpm.io.save_state(cosmo,
                         state,
                         a0, [nc, nc, nc], [bs, bs, bs],
                         'snapshot_density_testing',
                         attrs={'comoving_distance': r0})

    # Reload the snapshot with lenstools
    snapshot = FlowPMSnapshot.open('snapshot_density_testing')

    # Cut a lensplane in the middle of the volume
    lt_plane, resolution, NumPart = snapshot.cutPlaneGaussianGrid(
        normal=2,
        plane_resolution=plane_resolution,
        center=(bs / 2) * snapshot.Mpc_over_h,
        thickness=(bs / 4) * snapshot.Mpc_over_h,
        left_corner=np.zeros(3) * snapshot.Mpc_over_h,
        smooth=None,
        kind='density')

    # Cut the same lensplane with flowpm
    fpm_plane = flowpm.raytracing.density_plane(
        state,
        nc,
        center=nc / 2,
        width=nc / 4,
        plane_resolution=plane_resolution)

    # Apply additional normalization terms to match lenstools definitions
    constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2
    density_normalization = bs / 4 * r0 / a0
    fpm_plane = fpm_plane * density_normalization * constant_factor

    # Checking first the mean value, which accounts for any normalization
    # issues
    assert_allclose(np.mean(fpm_plane[0]), np.mean(lt_plane), rtol=1e-5)

    # To check pixelwise difference, we need to do some smoothing as lenstools and
    # flowpm use different painting kernels
    smooth_lt_plane = np.fft.ifft2(fourier_gaussian(np.fft.fft2(lt_plane),
                                                    3)).real
    smooth_fpm_plane = np.fft.ifft2(
        fourier_gaussian(np.fft.fft2(fpm_plane[0]), 3)).real

    assert_allclose(smooth_fpm_plane, smooth_lt_plane, rtol=2e-2)

    if return_results:
        return fpm_plane, lt_plane, smooth_fpm_plane, smooth_lt_plane
def pmgraph(lin):
    state = lpt_init(lin, a0=0.1, order=1)
    final_state = nbody(state, stages, FLAGS.nc)
    final_field = cic_paint(tf.zeros_like(lin), final_state[0])
    return final_field
Beispiel #18
0
def main(_):

    infield = True
    mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape)

    startw = time.time()

    print(mesh_shape)

    #layout_rules = mtf.convert_to_layout_rules(FLAGS.layout)
    #mesh_shape = [("row", FLAGS.nx), ("col", FLAGS.ny)]
    layout_rules = [("nx_lr", "row"), ("ny_lr", "col"), ("nx", "row"),
                    ("ny", "col"), ("ty", "row"), ("tz", "col"),
                    ("ty_lr", "row"), ("tz_lr", "col"), ("nx_block", "row"),
                    ("ny_block", "col")]

    # Resolve the cluster from SLURM environment
    cluster = tf.distribute.cluster_resolver.SlurmClusterResolver(
        {"mesh": mesh_shape.size // FLAGS.gpus_per_task},
        port_base=8822,
        gpus_per_node=FLAGS.gpus_per_node,
        gpus_per_task=FLAGS.gpus_per_task,
        tasks_per_node=FLAGS.tasks_per_node)
    cluster_spec = cluster.cluster_spec()
    print(cluster_spec)
    # Create a server for all mesh members
    server = tf.distribute.Server(cluster_spec, "mesh", cluster.task_id)
    print(server)

    if cluster.task_id > 0:
        server.join()

    # Otherwise we are the main task, let's define the devices
    devices = [
        "/job:mesh/task:%d/device:GPU:%d" % (i, j)
        for i in range(cluster_spec.num_tasks("mesh"))
        for j in range(FLAGS.gpus_per_task)
    ]
    print("List of devices", devices)

    mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl(
        mesh_shape, layout_rules, devices)

    ##Begin here
    klin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)

    #If initc, run normal flowpm to generate data
    tf.reset_default_graph()
    if infield:
        tfic = linear_field(FLAGS.nc,
                            FLAGS.box_size,
                            ipklin,
                            batch_size=1,
                            seed=100)
        if FLAGS.nbody:
            state = lpt_init(tfic, a0=0.1, order=1)
            final_state = nbody(state, stages, FLAGS.nc)

        else:
            final_state = lpt_init(tfic, a0=stages[-1], order=1)
        tfinal_field = cic_paint(tf.zeros_like(tfic), final_state[0])

        start = time.time()
        with tf.Session(server.target) as sess:
            ic, fin = sess.run([tfic, tfinal_field])
        print("\nTime taken for the vanilla flowpm thingy :\n ",
              time.time() - start)

    else:
        ic = None

    tf.reset_default_graph()
    print('ic constructed')

    graph = mtf.Graph()
    mesh = mtf.Mesh(graph, "my_mesh")

    initial_conditions, final_field, input_field = nbody_prototype(
        mesh, infield, nc=FLAGS.nc, batch_size=FLAGS.batch_size)

    # Lower mesh computation

    start = time.time()
    lowering = mtf.Lowering(graph, {mesh: mesh_impl})
    restore_hook = mtf.MtfRestoreHook(lowering)
    end = time.time()
    print('\n Time for lowering : %f \n' % (end - start))

    tf_initc = lowering.export_to_tf_tensor(initial_conditions)
    tf_final = lowering.export_to_tf_tensor(final_field)
    nc = FLAGS.nc

    with tf.Session(server.target) as sess:

        start = time.time()
        if infield:
            ic_check, fin_check = sess.run([tf_initc, tf_final],
                                           feed_dict={input_field: ic})
        else:
            ic_check, fin_check = sess.run([tf_initc, tf_final])
            ic, fin = ic_check, fin_check
        print('\n Time for the mesh run : %f \n' % (time.time() - start))

    plt.figure(figsize=(15, 3))
    plt.subplot(141)
    plt.imshow(ic_check[0].sum(axis=2))
    plt.title('Initial Conditions')

    plt.subplot(142)
    plt.imshow(fin[0].sum(axis=2))
    plt.title('TensorFlow (single GPU)')
    plt.colorbar()

    plt.subplot(143)
    plt.imshow(fin_check[0].sum(axis=2))
    plt.title('Mesh TensorFlow')
    plt.colorbar()

    plt.subplot(144)
    plt.imshow((fin_check[0] - fin[0]).sum(axis=2))
    plt.title('Residuals')
    plt.colorbar()

    plt.savefig("comparison_mesh.png")

    exit(0)

    ##
    exit(0)
Beispiel #19
0
#tf.reset_default_graph()
# Run normal flowpm to generate data
try:
    ic, fin = np.load(fpath + 'ic.npy'), np.load(fpath + 'final.npy')
    print('Data loaded')
except Exception as e:
    print('Exception occured', e)
    tfic = linear_field(FLAGS.nc,
                        FLAGS.box_size,
                        ipklin,
                        batch_size=1,
                        seed=100,
                        dtype=dtype)
    if FLAGS.nbody:
        state = lpt_init(tfic, a0=0.1, order=1)
        final_state = nbody(state, stages, FLAGS.nc)
    else:
        final_state = lpt_init(tfic, a0=stages[-1], order=1)
    tfinal_field = cic_paint(tf.zeros_like(tfic), final_state[0])
    with tf.Session() as sess:
        ic, fin = sess.run([tfic, tfinal_field])
    np.save(fpath + 'ic', ic)
    np.save(fpath + 'final', fin)

################################################################
#tf.reset_default_graph()
print('ic constructed')

noise = np.random.normal(0, 1, nc**3).reshape(fin.shape).astype(np.float32)
data_noised = fin + noise
Beispiel #20
0
def main(_):

    dtype = tf.float32

    startw = time.time()

    tf.random.set_random_seed(100)
    np.random.seed(100)

    # Compute a few things first, using simple tensorflow
    a0 = FLAGS.a0
    a = FLAGS.af
    nsteps = FLAGS.nsteps
    bs, nc = FLAGS.box_size, FLAGS.nc
    klin = np.loadtxt('../data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)
    stages = np.linspace(a0, a, nsteps, endpoint=True)

    tf.reset_default_graph()
    # Run normal flowpm to generate data
    try:
        ic, fin = np.load(fpath + 'ic.npy'), np.load(fpath + 'final.npy')
        print('Data loaded')
    except Exception as e:
        print('Exception occured', e)
        tfic = linear_field(FLAGS.nc,
                            FLAGS.box_size,
                            ipklin,
                            batch_size=1,
                            seed=100,
                            dtype=dtype)
        if FLAGS.nbody:
            state = lpt_init(tfic, a0=0.1, order=1)
            final_state = nbody(state, stages, FLAGS.nc)
        else:
            final_state = lpt_init(tfic, a0=stages[-1], order=1)
        tfinal_field = cic_paint(tf.zeros_like(tfic), final_state[0])
        with tf.Session() as sess:
            ic, fin = sess.run([tfic, tfinal_field])
        np.save(fpath + 'ic', ic)
        np.save(fpath + 'final', fin)

    k, pic = tools.power(ic[0] + 1, boxsize=bs)
    k, pfin = tools.power(fin[0], boxsize=bs)
    plt.plot(k, pic)
    plt.plot(k, pfin)
    plt.loglog()
    plt.grid(which='both')
    plt.savefig('pklin.png')
    plt.close()

    print(pic)
    print(pfin)
    #sys.exit(-1)

    ################################################################
    tf.reset_default_graph()
    print('ic constructed')

    noise = np.random.normal(0, 1, nc**3).reshape(fin.shape).astype(
        np.float32) * 1
    data_noised = fin + noise
    data = data_noised

    startpos = noise.copy().flatten().astype(np.float32)

    x0 = tf.placeholder(dtype=tf.float32,
                        shape=data.flatten().shape,
                        name='initlin')
    Rsm = tf.placeholder(tf.float32, name='smoothing')

    def recon_prototype(linearflat):
        """
        """

        linear = tf.reshape(linearflat, data.shape)
        #

        #loss = tf.reduce_sum(tf.square(linear - minimum))

        state = lpt_init(linear, a0=0.1, order=1)
        final_state = nbody(state, stages, FLAGS.nc)
        final_field = cic_paint(tf.zeros_like(linear), final_state[0])

        residual = final_field - data.astype(np.float32)
        base = residual
        Rsmsq = tf.multiply(Rsm * bs / nc, Rsm * bs / nc)
        smwts = tf.exp(tf.multiply(-kmesh**2, Rsmsq))
        basek = r2c3d(base, norm=nc**3)
        basek = tf.multiply(basek, tf.cast(smwts, tf.complex64))
        base = c2r3d(basek, norm=nc**3)
        #
        chisq = tf.multiply(base, base)
        chisq = tf.reduce_sum(chisq)
        chisq = tf.multiply(chisq, 1 / nc**3, name='chisq')

        #Prior
        lineark = r2c3d(linear, norm=nc**3)
        priormesh = tf.square(tf.cast(tf.abs(lineark), tf.float32))
        prior = tf.reduce_sum(tf.multiply(priormesh, 1 / priorwt))
        prior = tf.multiply(prior, 1 / nc**3, name='prior')
        #
        loss = chisq + prior

        grad = tf.gradients(loss, linearflat)
        print(grad)
        return loss, grad[0]

    @tf.function
    def min_lbfgs():
        return tfp.optimizer.lbfgs_minimize(
            #make_val_and_grad_fn(recon_prototype),
            recon_prototype,
            initial_position=x0,
            tolerance=1e-10,
            max_iterations=100)

    with tf.Session() as sess:
        start = time.time()
        results = sess.run(min_lbfgs(), {Rsm: 2, x0: startpos})
        print("\n")
        print(results)
        print("\n")
        minimum = results.position
        print(minimum)
        print("\nTime taken : ", time.time() - start)

        start = time.time()
        results = sess.run(min_lbfgs(), {Rsm: 1, x0: minimum})
        print("\n")
        print(results)
        minimum = results.position
        print("\n")
        print(minimum)
        print("\nTime taken : ", time.time() - start)

        start = time.time()
        results = sess.run(min_lbfgs(), {Rsm: 0, x0: minimum})
        print("\n")
        print(results)
        minimum = results.position
        print("\n")
        print(minimum)
        print("\nTime taken : ", time.time() - start)

    tf.reset_default_graph()
    print("\n")
    print('\nminimized\n')

    tfic = linear_field(
        FLAGS.nc, FLAGS.box_size, ipklin, batch_size=1, seed=100,
        dtype=dtype) * 0 + minimum.reshape(data_noised.shape)
    state = lpt_init(tfic, a0=0.1, order=1)
    final_state = nbody(state, stages, FLAGS.nc)
    tfinal_field = cic_paint(tf.zeros_like(tfic), final_state[0])
    with tf.Session() as sess:
        minic, minfin = sess.run([tfic, tfinal_field])

    dg.saveimfig(0, [minic, minfin], [ic, fin], fpath + '')
    dg.save2ptfig(0, [minic, minfin], [ic, fin], fpath + '', bs)

    np.save(fpath + 'recon0ic', minic)
    np.save(fpath + 'recon-final', minfin)

    ##
    exit(0)
def main(_):
    cosmology = flowpm.cosmology.Planck15()
    # Create a simple Planck15 cosmology without neutrinos, and makes sure sigma8
    # is matched
    nbdykit_cosmo = Cosmology.from_astropy(Planck15.clone(m_nu=0 * u.eV))
    nbdykit_cosmo = nbdykit_cosmo.match(sigma8=cosmology.sigma8.numpy())

    # Compute the k vectora that will be needed in the PGD fit
    k, _ = flowpm.power_spectrum(tf.zeros([1] + [FLAGS.nc] * 3),
                                 boxsize=np.array([FLAGS.box_size] * 3),
                                 kmin=np.pi / FLAGS.box_size,
                                 dk=2 * np.pi / FLAGS.box_size)

    # Create some initial conditions
    klin = tf.constant(np.logspace(-4, 1, 512), dtype=tf.float32)
    pk = linear_matter_power(cosmology, klin)
    pk_fun = lambda x: tf.cast(
        tf.reshape(
            interpolate.interp_tf(tf.reshape(tf.cast(x, tf.float32), [-1]),
                                  klin, pk), x.shape), tf.complex64)

    initial_conditions = flowpm.linear_field(
        [FLAGS.nc, FLAGS.nc, FLAGS.nc],
        [FLAGS.box_size, FLAGS.box_size, FLAGS.box_size],
        pk_fun,
        batch_size=FLAGS.batch_size)

    initial_state = flowpm.lpt_init(cosmology, initial_conditions,
                                    FLAGS.a_init)
    stages = np.linspace(FLAGS.a_init, 1., FLAGS.nsteps, endpoint=True)

    print('Starting simulation')
    # Run the Nbody
    states = flowpm.nbody(cosmology,
                          initial_state,
                          stages, [FLAGS.nc, FLAGS.nc, FLAGS.nc],
                          pm_nc_factor=FLAGS.B,
                          return_intermediate_states=True)
    print('Simulation done')

    # Initialize PGD params
    alpha = tf.Variable([FLAGS.alpha0], dtype=tf.float32)
    scales = tf.Variable([FLAGS.kl0, FLAGS.ks0], dtype=tf.float32)
    optimizer = tf.keras.optimizers.Adam(learning_rate=FLAGS.learning_rate)

    params = []
    scale_factors = []
    # We begin by fitting the last time step
    for j, (a, state) in enumerate(states[::-1]):
        # Let's compute the target power spectrum at that scale factor
        target_pk = HalofitPower(nbdykit_cosmo,
                                 1. / a - 1.)(k).astype('float32')

        for i in range(FLAGS.niter if j == 0 else FLAGS.niter_refine):
            optimizer.minimize(
                partial(pgd_loss, alpha, scales, state, target_pk), [alpha] if
                (FLAGS.fix_scales and j > 0) else [alpha, scales])

            if i % 10 == 0:
                loss, pk = pgd_loss(alpha,
                                    scales,
                                    state,
                                    target_pk,
                                    return_pk=True)
                if i == 0:
                    pk0 = pk
                print("step %d, loss:" % i, loss)
        params.append(np.concatenate([alpha.numpy(), scales.numpy()]))
        scale_factors.append(a)
        print("Fitted params (alpha, kl, ks)", params[-1])

        plt.loglog(k, target_pk, "k")
        plt.loglog(k, pk0, ':', label='starting')
        plt.loglog(k, pk, '--', label='after n steps')
        plt.grid(which='both')
        plt.savefig('PGD_fit_%0.2f.png' % a)
        plt.close()

    pickle.dump(
        {
            'B': FLAGS.B,
            'nsteps': FLAGS.nsteps,
            'params': params,
            'scale_factors': scale_factors,
            'cosmology': cosmology.to_dict(),
            'boxsize': FLAGS.box_size,
            'nc': FLAGS.nc
        }, open(FLAGS.filename, "wb"))
Beispiel #22
0
def main(_):

    dtype = tf.float32

    startw = time.time()

    tf.random.set_random_seed(100)
    np.random.seed(100)

    # Compute a few things first, using simple tensorflow
    a0 = FLAGS.a0
    a = FLAGS.af
    nsteps = FLAGS.nsteps
    bs, nc = FLAGS.box_size, FLAGS.nc
    klin = np.loadtxt('../data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)
    stages = np.linspace(a0, a, nsteps, endpoint=True)

    tf.reset_default_graph()
    # Run normal flowpm to generate data
    try:
        ic, fin = np.load(fpath + 'ic.npy'), np.load(fpath + 'final.npy')
        print('Data loaded')
    except Exception as e:
        print('Exception occured', e)
        tfic = linear_field(FLAGS.nc,
                            FLAGS.box_size,
                            ipklin,
                            batch_size=1,
                            seed=100,
                            dtype=dtype)
        if FLAGS.nbody:
            state = lpt_init(tfic, a0=0.1, order=1)
            final_state = nbody(state, stages, FLAGS.nc)
        else:
            final_state = lpt_init(tfic, a0=stages[-1], order=1)
        tfinal_field = cic_paint(tf.zeros_like(tfic), final_state[0])
        with tf.Session() as sess:
            ic, fin = sess.run([tfic, tfinal_field])
        np.save(fpath + 'ic', ic)
        np.save(fpath + 'final', fin)

    tf.reset_default_graph()
    print('ic constructed')

    linear, final_field, update_ops, loss, chisq, prior, Rsm = recon_prototype(
        fin)

    #initial_conditions = recon_prototype(mesh, fin, nc=FLAGS.nc,  batch_size=FLAGS.batch_size, dtype=dtype)

    # Lower mesh computation

    with tf.Session() as sess:

        #ic_check, fin_check = sess.run([tf_initc, tf_final])
        #sess.run(tf_linear_op, feed_dict={input_field:ic})
        #ic_check, fin_check = sess.run([linear, final_field])
        #dg.saveimfig('-check', [ic_check, fin_check], [ic, fin], fpath)
        #dg.save2ptfig('-check', [ic_check, fin_check], [ic, fin], fpath, bs)

        #sess.run(tf_linear_op, feed_dict={input_field:np.random.normal(size=ic.size).reshape(ic.shape)})
        sess.run(tf.global_variables_initializer())
        ic0, fin0 = sess.run([linear, final_field])
        dg.saveimfig('-init', [ic0, fin0], [ic, fin], fpath)
        start = time.time()

        titer = 20
        niter = 201
        iiter = 0

        start0 = time.time()
        RRs = [4, 2, 1, 0.5, 0]
        lrs = np.array([0.1, 0.1, 0.1, 0.1, 0.1]) * 2
        #lrs = [0.1, 0.05, 0.01, 0.005, 0.001]
        for iR, zlR in enumerate(zip(RRs, lrs)):
            RR, lR = zlR
            for ff in [fpath + '/figs-R%02d' % (10 * RR)]:
                try:
                    os.makedirs(ff)
                except Exception as e:
                    print(e)

            for i in range(niter):
                iiter += 1
                sess.run(update_ops, {Rsm: RR})
                print(sess.run([loss, chisq, prior], {Rsm: RR}))
                if (i % titer == 0):
                    end = time.time()
                    print('Iter : ', i)
                    print('Time taken for %d iterations: ' % titer,
                          end - start)
                    start = end

                    ##
                    #ic1, fin1, cc, pp = sess.run([tf_initc, tf_final, tf_chisq, tf_prior], {R0:RR})
                    #ic1, fin1, cc, pp = sess.run([tf_initc, tf_final, tf_chisq, tf_prior], {R0:RR})
                    ic1, fin1 = sess.run([linear, final_field])
                    #print('Chisq and prior are : ', cc, pp)

                    dg.saveimfig(i, [ic1, fin1], [ic, fin],
                                 fpath + '/figs-R%02d' % (10 * RR))
                    dg.save2ptfig(i, [ic1, fin1], [ic, fin],
                                  fpath + '/figs-R%02d' % (10 * RR), bs)
            dg.saveimfig(i * (iR + 1), [ic1, fin1], [ic, fin], fpath + '/figs')
            dg.save2ptfig(i * (iR + 1), [ic1, fin1], [ic, fin],
                          fpath + '/figs', bs)

        ic1, fin1 = sess.run([linear, final_field])
        print('Total time taken for %d iterations is : ' % iiter,
              time.time() - start0)

    dg.saveimfig(i, [ic1, fin1], [ic, fin], fpath)
    dg.save2ptfig(i, [ic1, fin1], [ic, fin], fpath, bs)

    np.save(fpath + 'ic_recon', ic1)
    np.save(fpath + 'final_recon', fin1)
    print('Total wallclock time is : ', time.time() - start0)

    ##
    exit(0)
Beispiel #23
0
def main(_):

    infield = True
    dtype = tf.float32
    mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape)
    nc, bs = FLAGS.nc, FLAGS.box_size
    a0, a, nsteps = FLAGS.a0, FLAGS.af, FLAGS.nsteps
    stages = np.linspace(a0, a, nsteps, endpoint=True)
    numd = 1e-3

    ##Begin here
    klin = np.loadtxt('../data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)

    #pypath = '/global/cscratch1/sd/chmodi/cosmo4d/output/version2/L0400_N0128_05step-fof/lhd_S0100/n10/opt_s999_iM12-sm3v25off/meshes/'
    final = tools.readbigfile('../data//L0400_N0128_S0100_05step/mesh/d/')
    ic = tools.readbigfile('../data/L0400_N0128_S0100_05step/mesh/s/')
    fpos = tools.readbigfile(
        '../data/L0400_N0128_S0100_05step/dynamic/1/Position/')

    hpos = tools.readbigfile(
        '../data/L0400_N0512_S0100_40step/FOF/PeakPosition//')[1:int(bs**3 *
                                                                     numd)]
    hmass = tools.readbigfile(
        '../data/L0400_N0512_S0100_40step/FOF/Mass//')[1:int(bs**3 *
                                                             numd)].flatten()

    meshpos = tools.paintcic(hpos, bs, nc)
    meshmass = tools.paintcic(hpos, bs, nc, hmass.flatten() * 1e10)
    data = meshmass
    data /= data.mean()
    data -= 1
    kv = tools.fftk([nc, nc, nc], bs, symmetric=True, dtype=np.float32)
    datasm = tools.fingauss(data, kv, 3, np.pi * nc / bs)
    ic, data = np.expand_dims(ic, 0), np.expand_dims(data,
                                                     0).astype(np.float32)
    datasm = np.expand_dims(datasm, 0).astype(np.float32)
    print("Min in data : %0.4e" % datasm.min())

    np.save(fpath + 'ic', ic)
    np.save(fpath + 'data', data)

    ####################################################
    #
    tf.reset_default_graph()
    tfic = tf.constant(ic.astype(np.float32))
    state = lpt_init(tfic, a0=0.1, order=1)
    final_state = nbody(state, stages, FLAGS.nc)
    tfinal_field = cic_paint(tf.zeros_like(tfic), final_state[0])
    with tf.Session() as sess:
        state = sess.run(final_state)

    fpos = state[0, 0] * bs / nc
    bparams, bmodel = getbias(bs, nc, data[0] + 1, ic[0], fpos)
    #bmodel += 1 #np.expand_dims(bmodel, 0) + 1
    errormesh = data - np.expand_dims(bmodel, 0)
    kerror, perror = tools.power(errormesh[0] + 1, boxsize=bs)
    kerror, perror = kerror[1:], perror[1:]
    print("Error power spectra", kerror, perror)
    print("\nkerror", kerror.min(), kerror.max(), "\n")
    print("\nperror", perror.min(), perror.max(), "\n")
    suff = "-error"
    dg.saveimfig(suff, [ic, errormesh], [ic, data], fpath + '/figs/')
    dg.save2ptfig(suff, [ic, errormesh], [ic, data], fpath + '/figs/', bs)
    ipkerror = iuspline(kerror, perror)

    ####################################################

    #stdinit = srecon.standardinit(bs, nc, meshpos, hpos, final, R=8)

    recon_estimator = tf.estimator.Estimator(model_fn=model_fn,
                                             model_dir=fpath)

    def predict_input_fn(data=data,
                         M0=0.,
                         w=3.,
                         R0=0.,
                         off=None,
                         istd=None,
                         x0=None):
        features = {}
        features['datasm'] = data
        features['R0'] = R0
        features['x0'] = x0
        features['bparams'] = bparams
        features['ipkerror'] = [kerror, perror]  #ipkerror
        return features, None

    eval_results = recon_estimator.predict(
        input_fn=lambda: predict_input_fn(x0=ic), yield_single_examples=False)

    for i, pred in enumerate(eval_results):
        if i > 0: break

    suff = '-model'
    dg.saveimfig(suff, [pred['ic'], pred['model']], [ic, data],
                 fpath + '/figs/')
    dg.save2ptfig(suff, [pred['ic'], pred['model']], [ic, data],
                  fpath + '/figs/', bs)
    np.save(fpath + '/reconmeshes/ic_true' + suff, pred['ic'])
    np.save(fpath + '/reconmeshes/fin_true' + suff, pred['final'])
    np.save(fpath + '/reconmeshes/model_true' + suff, pred['model'])

    #
    randominit = np.random.normal(size=data.size).reshape(data.shape)
    #eval_results = recon_estimator.predict(input_fn=lambda : predict_input_fn(x0 = np.expand_dims(stdinit, 0)), yield_single_examples=False)
    eval_results = recon_estimator.predict(
        input_fn=lambda: predict_input_fn(x0=randominit),
        yield_single_examples=False)

    for i, pred in enumerate(eval_results):
        if i > 0: break

    suff = '-init'
    dg.saveimfig(suff, [pred['ic'], pred['model']], [ic, data],
                 fpath + '/figs/')
    dg.save2ptfig(suff, [pred['ic'], pred['model']], [ic, data],
                  fpath + '/figs/', bs)
    np.save(fpath + '/reconmeshes/ic_init' + suff, pred['ic'])
    np.save(fpath + '/reconmeshes/fin_init' + suff, pred['final'])
    np.save(fpath + '/reconmeshes/model_init' + suff, pred['model'])

    #
    # Train and evaluate model.
    RRs = [4., 2., 1., 0.5, 0.]
    niter = 100
    iiter = 0

    for R0 in RRs:

        print('\nFor iteration %d\n' % iiter)
        print('With  R0=%0.2f \n' % (R0))

        def train_input_fn():
            features = {}
            features['datasm'] = data
            features['R0'] = R0
            features['bparams'] = bparams
            features['ipkerror'] = [kerror, perror]  #ipkerror
            #features['x0'] = np.expand_dims(stdinit, 0)
            features['x0'] = randominit
            features['lr'] = 0.01
            return features, None

        recon_estimator.train(input_fn=train_input_fn, max_steps=iiter + niter)
        eval_results = recon_estimator.predict(input_fn=predict_input_fn,
                                               yield_single_examples=False)

        for i, pred in enumerate(eval_results):
            if i > 0: break

        iiter += niter  #
        suff = '-%d-R%d' % (iiter, R0)
        dg.saveimfig(suff, [pred['ic'], pred['model']], [ic, data],
                     fpath + '/figs/')
        dg.save2ptfig(suff, [pred['ic'], pred['model']], [ic, data],
                      fpath + '/figs/', bs)
        np.save(fpath + '/reconmeshes/ic' + suff, pred['ic'])
        np.save(fpath + '/reconmeshes/fin' + suff, pred['final'])
        np.save(fpath + '/reconmeshes/model' + suff, pred['model'])

    sys.exit(0)

    ##
    exit(0)
Beispiel #24
0
def main(_):

    dtype = tf.float32
    mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape)

    print(mesh_shape)

    #layout_rules = mtf.convert_to_layout_rules(FLAGS.layout)
    #mesh_shape = [("row", FLAGS.nx), ("col", FLAGS.ny)]
    layout_rules = [("nx_lr", "row"), ("ny_lr", "col"), ("nx", "row"),
                    ("ny", "col"), ("ty", "row"), ("tz", "col"),
                    ("ty_lr", "row"), ("tz_lr", "col"), ("nx_block", "row"),
                    ("ny_block", "col")]

    # Resolve the cluster from SLURM environment
    cluster = tf.distribute.cluster_resolver.SlurmClusterResolver(
        {"mesh": mesh_shape.size // FLAGS.gpus_per_task},
        port_base=8822,
        gpus_per_node=FLAGS.gpus_per_node,
        gpus_per_task=FLAGS.gpus_per_task,
        tasks_per_node=FLAGS.tasks_per_node)
    cluster_spec = cluster.cluster_spec()
    print(cluster_spec)
    # Create a server for all mesh members
    server = tf.distribute.Server(cluster_spec, "mesh", cluster.task_id)
    print(server)

    if cluster.task_id > 0:
        server.join()

    # Otherwise we are the main task, let's define the devices
    devices = [
        "/job:mesh/task:%d/device:GPU:%d" % (i, j)
        for i in range(cluster_spec.num_tasks("mesh"))
        for j in range(FLAGS.gpus_per_task)
    ]
    print("List of devices", devices)

    mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl(
        mesh_shape, layout_rules, devices)

    ##Begin here
    klin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)

    tf.reset_default_graph()
    # Run normal flowpm to generate data
    try:
        ic, fin = np.load(fpath + 'ic.npy'), np.load(fpath + 'final.npy')
        print('Data loaded')
    except Exception as e:
        print('Exception occured', e)
        tfic = linear_field(FLAGS.nc,
                            FLAGS.box_size,
                            ipklin,
                            batch_size=1,
                            seed=100,
                            dtype=dtype)
        if FLAGS.nbody:
            state = lpt_init(tfic, a0=0.1, order=1)
            final_state = nbody(state, stages, FLAGS.nc)
        else:
            final_state = lpt_init(tfic, a0=stages[-1], order=1)
        tfinal_field = cic_paint(tf.zeros_like(tfic), final_state[0])
        with tf.Session(server.target) as sess:
            ic, fin = sess.run([tfic, tfinal_field])
        np.save(fpath + 'ic', ic)
        np.save(fpath + 'final', fin)

    tf.reset_default_graph()
    print('ic constructed')

    graph = mtf.Graph()
    mesh = mtf.Mesh(graph, "my_mesh")

    initial_conditions, final_field, loss, var_grads, update_op, linear_op, input_field, lr, R0 = recon_prototype(
        mesh, fin, nc=FLAGS.nc, batch_size=FLAGS.batch_size, dtype=dtype)

    # Lower mesh computation

    start = time.time()
    lowering = mtf.Lowering(graph, {mesh: mesh_impl})
    restore_hook = mtf.MtfRestoreHook(lowering)
    end = time.time()
    print('\n Time for lowering : %f \n' % (end - start))

    tf_initc = lowering.export_to_tf_tensor(initial_conditions)
    tf_final = lowering.export_to_tf_tensor(final_field)
    tf_grads = lowering.export_to_tf_tensor(var_grads[0])
    tf_linear_op = lowering.lowered_operation(linear_op)
    tf_update_ops = lowering.lowered_operation(update_op)
    n_block_x, n_block_y, n_block_z = FLAGS.nx, FLAGS.ny, 1
    nc = FLAGS.nc
    ic_hrshape = ic.reshape([
        FLAGS.batch_size, n_block_x, nc // n_block_x, n_block_y,
        nc // n_block_y, n_block_z, nc // n_block_z
    ])
    ic_hrshape = np.transpose(ic_hrshape, [0, 1, 3, 5, 2, 4, 6])
    with tf.Session(server.target) as sess:

        #ic_check, fin_check = sess.run([tf_initc, tf_final])
        sess.run(tf_linear_op, feed_dict={input_field: ic_hrshape})
        ic_check, fin_check = sess.run([tf_initc, tf_final])
        dg.saveimfig('-check', [ic_check, fin_check], [ic, fin], fpath)
        dg.save2ptfig('-check', [ic_check, fin_check], [ic, fin], fpath, bs)

        sess.run(tf_linear_op,
                 feed_dict={
                     input_field:
                     np.random.normal(size=ic.size).reshape(ic_hrshape.shape)
                 })
        ic0, fin0 = sess.run([tf_initc, tf_final])
        dg.saveimfig('-init', [ic0, fin0], [ic, fin], fpath)
        start = time.time()

        niter = 5
        iiter = 0
        start0 = time.time()
        RRs = [4, 2, 1, 0.5, 0]
        lrs = np.array([0.2, 0.15, 0.1, 0.1, 0.1])
        #lrs = [0.1, 0.05, 0.01, 0.005, 0.001]

        for iR, zlR in enumerate(zip(RRs, lrs)):
            RR, lR = zlR
            #for ff in [fpath + '/figs-R%02d'%(10*RR)]:
            for ff in [fpath + '/figsiter']:
                try:
                    os.makedirs(ff)
                except Exception as e:
                    print(e)
            for i in range(301):
                if (i % niter == 0):
                    end = time.time()
                    print('Iter : ', i)
                    print('Time taken for %d iterations: ' % niter,
                          end - start)
                    start = end
                    ##
                    ic1, fin1 = sess.run([tf_initc, tf_final])

                    #dg.saveimfig(i, [ic1, fin1], [ic, fin], fpath+'/figs-R%02d'%(10*RR))
                    #dg.save2ptfig(i, [ic1, fin1], [ic, fin], fpath+'/figs-R%02d'%(10*RR), bs)
                    dg.saveimfig2x2(iiter, [ic1, fin1], [ic, fin],
                                    fpath + '/figsiter')
                    #
                sess.run(tf_update_ops, {lr: lR, R0: RR})
                iiter += 1

            dg.saveimfig(i * (iR + 1), [ic1, fin1], [ic, fin], fpath + '/figs')
            dg.save2ptfig(i * (iR + 1), [ic1, fin1], [ic, fin],
                          fpath + '/figs', bs)

        ic1, fin1 = sess.run([tf_initc, tf_final])
        print('Total time taken for %d iterations is : ' % iiter,
              time.time() - start0)

    dg.saveimfig(i, [ic1, fin1], [ic, fin], fpath)
    dg.save2ptfig(i, [ic1, fin1], [ic, fin], fpath, bs)

    np.save(fpath + 'ic_recon', ic1)
    np.save(fpath + 'final_recon', fin1)
    print('Total wallclock time is : ', time.time() - start0)

    ##
    exit(0)
Beispiel #25
0
def recon_prototype(data,
                    anneal=True,
                    nc=FLAGS.nc,
                    bs=FLAGS.box_size,
                    batch_size=FLAGS.batch_size,
                    a0=FLAGS.a0,
                    a=FLAGS.af,
                    nsteps=FLAGS.nsteps,
                    dtype=tf.float32):
    """
    Prototype of function computing LPT deplacement.

    Returns output tensorflow and mesh tensorflow tensors
    """
    if dtype == tf.float32:
        npdtype = "float32"
        cdtype = tf.complex64
    elif dtype == tf.float64:
        npdtype = "float64"
        cdtype = tf.complex128
    print(dtype, npdtype)

    #graph = mtf.Graph()
    #mesh = mtf.Mesh(graph, "my_mesh")

    linear = tf.get_variable('linmesh',
                             shape=(1, nc, nc, nc),
                             dtype=tf.float32,
                             initializer=tf.random_normal_initializer(),
                             trainable=True)

    state = lpt_init(linear, a0=0.1, order=1)
    final_state = nbody(state, stages, FLAGS.nc)
    final_field = cic_paint(tf.zeros_like(linear), final_state[0])

    residual = final_field - data.astype(np.float32)
    base = residual
    ##Anneal
    Rsm = tf.placeholder(tf.float32, name='smoothing')
    if anneal:
        #def anneal
        Rsmsq = tf.multiply(Rsm * bs / nc, Rsm * bs / nc)
        smwts = tf.exp(tf.multiply(-kmesh**2, Rsmsq))
        basek = r2c3d(base, norm=nc**3)
        basek = tf.multiply(basek, tf.cast(smwts, tf.complex64))
        base = c2r3d(basek, norm=nc**3)

    chisq = tf.multiply(base, base)
    chisq = tf.reduce_sum(chisq)
    #chisq = tf.multiply(chisq, 1/nc**3, name='chisq')

    #Prior
    lineark = r2c3d(linear, norm=nc**3)
    priormesh = tf.square(tf.cast(tf.abs(lineark), tf.float32))
    prior = tf.reduce_sum(tf.multiply(priormesh, 1 / priorwt))
    #prior = tf.multiply(prior, 1/nc**3, name='prior')
    #

    loss = chisq + prior

    ##    #optimizer = tf.optimize.AdamWeightDecayOptimizer(0.01)
    ##    opt = tf.train.GradientDescentOptimizer(learning_rate=0.01)
    ##
    ##    # Compute the gradients for a list of variables.
    ##    grads_and_vars = opt.compute_gradients(loss, [linear])
    ##    print("\ngradients : ", grads_and_vars)
    ##    update_ops = opt.apply_gradients(grads_and_vars)
    ##
    ##    #optimizer = tf.keras.optimizers.Adam(0.01)
    ##    #var_grads = tf.gradients([loss], [linear])
    ##
    ##
    ##    #update_ops = optimizer.apply_gradients(var_grads, linear)
    ##    #update_ops = optimizer.apply_gradients(zip(var_grads, [linear]))
    ##    #update_ops = None
    ##    #lr = tf.placeholder(tf.float32, shape=())
    ##    #update_op = mtf.assign(fieldvar, fieldvar - var_grads[0]*lr)
    ##
    return linear, final_field, loss, chisq, prior


for ss in range(100, 1000, 100):

    path = '../data/z00/L%04d_N%04d_S%04d_%dstep/'%(bs, nc,  ss, nsteps)

    ic = np.expand_dims(tools.readbigfile(path + '/mesh/s/').astype(np.float32), axis=0)
    print(ic.shape)

    initial_conditions = tf.cast(tf.constant(ic), tf.float32) 
        
    print(initial_conditions)

    # Sample particles
    state = flowpm.lpt_init(initial_conditions, a0=ainit)   

    # Evolve particles down to z=0
    final_state = flowpm.nbody(state, stages, nc)         

    # Retrieve final density field
    final_field = flowpm.cic_paint(tf.zeros_like(initial_conditions), final_state[0])


    with tf.Session() as sess:
        #ic, sim = sess.run([initial_conditions, final_field])
        sim = sess.run(final_field)

    print(sim.shape)
    np.save(path + '/mesh/d', np.squeeze(sim))
Beispiel #27
0
def main(_):

    mesh_shape = [("row", 2), ("col", 2)]
    layout_rules = [("nx_lr", "row"), ("ny_lr", "col"), ("nx", "row"),
                    ("ny", "col"), ("ty_lr", "row"), ("tz_lr", "col"),
                    ("nx_block", "row"), ("ny_block", "col")]

    mesh_hosts = ["localhost:%d" % (8222 + j) for j in range(4)]

    # Create a cluster from the mesh hosts.
    cluster = tf.train.ClusterSpec({
        "mesh": mesh_hosts,
        "master": ["localhost:8488"]
    })

    # Create a server for local mesh members
    server = tf.train.Server(cluster, job_name="master", task_index=0)

    mesh_devices = [
        '/job:mesh/task:%d' % i for i in range(cluster.num_tasks("mesh"))
    ]
    print("List of devices", mesh_devices)
    mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl(
        mesh_shape, layout_rules, mesh_devices)

    # Build the model

    # Create computational graphs and some initializations

    graph = mtf.Graph()
    mesh = mtf.Mesh(graph, "nbody_mesh")

    # Compute a few things first, using simple tensorflow
    a0 = FLAGS.a0
    a = FLAGS.af
    nsteps = FLAGS.nsteps
    bs, nc = FLAGS.box_size, FLAGS.nc
    klin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)
    stages = np.linspace(a0, a, nsteps, endpoint=True)

    #pt = PerturbationGrowth(cosmology, a=[a], a_normalize=1.0)
    # Generate a batch of 3D initial conditions
    initial_conditions = flowpm.linear_field(
        FLAGS.nc,  # size of the cube
        FLAGS.box_size,  # Physical size of the cube
        ipklin,  # Initial power spectrum
        batch_size=FLAGS.batch_size)

    state = lpt_init(initial_conditions, a0=a0, order=1)
    #final_state = state
    final_state = nbody(state, stages, nc)
    tfinal_field = cic_paint(tf.zeros_like(initial_conditions), final_state[0])

    # Compute necessary Fourier kernels
    kvec = flowpm.kernels.fftk((nc, nc, nc), symmetric=False)
    from flowpm.kernels import laplace_kernel, gradient_kernel
    lap = tf.cast(laplace_kernel(kvec), tf.complex64)
    grad_x = gradient_kernel(kvec, 0)
    grad_y = gradient_kernel(kvec, 1)
    grad_z = gradient_kernel(kvec, 2)
    derivs = [lap, grad_x, grad_y, grad_z]

    mesh_final_field = lpt_prototype(mesh,
                                     initial_conditions,
                                     derivs,
                                     bs=FLAGS.box_size,
                                     nc=FLAGS.nc,
                                     batch_size=FLAGS.batch_size)
    # Lower mesh computation
    lowering = mtf.Lowering(graph, {mesh: mesh_impl})

    # Retrieve output of computation
    result = lowering.export_to_tf_tensor(mesh_final_field)

    with tf.Session(server.target,
                    config=tf.ConfigProto(allow_soft_placement=True,
                                          log_device_placement=False)) as sess:
        a, b, c = sess.run([initial_conditions, tfinal_field, result])
    np.save('init', a)
    np.save('reference_final', b)
    np.save('mesh_pyramid', c)

    plt.figure(figsize=(15, 3))
    plt.subplot(141)
    plt.imshow(a[0].sum(axis=2))
    plt.title('Initial Conditions')

    plt.subplot(142)
    plt.imshow(b[0].sum(axis=2))
    plt.title('TensorFlow (single GPU)')
    plt.colorbar()

    plt.subplot(143)
    plt.imshow(c[0].sum(axis=2))
    plt.title('Mesh TensorFlow Single')
    plt.colorbar()

    plt.subplot(144)
    plt.imshow((b[0] - c[0]).sum(axis=2))
    plt.title('Residuals')
    plt.colorbar()

    plt.savefig("comparison-single.png")

    exit(0)
Beispiel #28
0
def main(_):

    dtype = tf.float32
    mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape)

    startw = time.time()

    print(mesh_shape)
    ##
    ##
    ##Begin here
    klin = np.loadtxt('../data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('..//data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)

    tf.reset_default_graph()
    # Run normal flowpm to generate data
    try:
        ic, fin = np.load(fpath + 'ic.npy'), np.load(fpath + 'final.npy')
        print('Data loaded')
    except Exception as e:
        print('Exception occured', e)
        tfic = linear_field(FLAGS.nc,
                            FLAGS.box_size,
                            ipklin,
                            batch_size=1,
                            seed=100,
                            dtype=dtype)
        if FLAGS.nbody:
            state = lpt_init(tfic, a0=0.1, order=1)
            final_state = nbody(state, stages, FLAGS.nc)
        else:
            final_state = lpt_init(tfic, a0=stages[-1], order=1)
        tfinal_field = cic_paint(tf.zeros_like(tfic), final_state[0])
        with tf.Session() as sess:
            ic, fin = sess.run([tfic, tfinal_field])
        np.save(fpath + 'ic', ic)
        np.save(fpath + 'final', fin)

    print(ic.shape, fin.shape)
    ########################################################
    print(ic.shape, fin.shape)
    recon_estimator = tf.estimator.Estimator(model_fn=model_fn,
                                             model_dir=fpath)

    def eval_input_fn():
        features = {}
        features['data'] = fin
        features['R0'] = 0
        features['x0'] = None
        features['lr'] = 0
        return features, None

    # Train and evaluate model.

    RRs = [4., 2., 1., 0.5, 0.]
    niter = 200
    iiter = 0

    for R0 in RRs:
        print('\nFor iteration %d and R=%0.1f\n' % (iiter, R0))

        def train_input_fn():
            features = {}
            features['data'] = fin
            features['R0'] = R0
            features['x0'] = np.random.normal(size=fin.size).reshape(fin.shape)
            features['lr'] = 0.01
            return features, None

        for _ in range(1):
            recon_estimator.train(input_fn=train_input_fn,
                                  max_steps=iiter + niter)
            eval_results = recon_estimator.predict(input_fn=eval_input_fn,
                                                   yield_single_examples=False)

            for i, pred in enumerate(eval_results):
                if i > 0: break

            iiter += niter  #
            dg.saveimfig(iiter, [pred['ic'], pred['data']], [ic, fin],
                         fpath + '/figs/')
            dg.save2ptfig(iiter, [pred['ic'], pred['data']], [ic, fin],
                          fpath + '/figs/', bs)

    sys.exit(0)
Beispiel #29
0
def pm(linear):
    state = lpt_init(linear, a0=0.1, order=1)
    final_state = nbody(state, stages, nc)
    tfinal_field = cic_paint(tf.zeros_like(linear), final_state[0])
    return tfinal_field
Beispiel #30
0
def main(_):

    mesh_shape = [("row", FLAGS.nx), ("col", FLAGS.ny)]
    layout_rules = [("nx_lr", "row"), ("ny_lr", "col"), ("nx", "row"),
                    ("ny", "col"), ("ty_lr", "row"), ("tz_lr", "col"),
                    ("nx_block", "row"), ("ny_block", "col")]

    mesh_impl = HvdSimdMeshImpl(mtf.convert_to_shape(mesh_shape),
                                mtf.convert_to_layout_rules(layout_rules))

    # Build the model

    # Create computational graphs and some initializations

    graph = mtf.Graph()
    mesh = mtf.Mesh(graph, "nbody_mesh")

    # Compute a few things first, using simple tensorflow
    a0 = FLAGS.a0
    a = FLAGS.af
    nsteps = FLAGS.nsteps
    bs, nc = FLAGS.box_size, FLAGS.nc
    klin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)
    stages = np.linspace(a0, a, nsteps, endpoint=True)

    #pt = PerturbationGrowth(cosmology, a=[a], a_normalize=1.0)
    # Generate a batch of 3D initial conditions
    initial_conditions = flowpm.linear_field(
        FLAGS.nc,  # size of the cube
        FLAGS.box_size,  # Physical size of the cube
        ipklin,  # Initial power spectrum
        batch_size=FLAGS.batch_size)
    cosmo = flowpm.cosmology.Planck15()
    state = lpt_init(cosmo, initial_conditions, a, order=1)
    final_state = state
    #final_state = nbody(cosmo, state, stages, nc)
    tfinal_field = cic_paint(tf.zeros_like(initial_conditions), final_state[0])

    # Compute necessary Fourier kernels
    kvec = flowpm.kernels.fftk((nc, nc, nc), symmetric=False)
    from flowpm.kernels import laplace_kernel, gradient_kernel
    lap = tf.cast(laplace_kernel(kvec), tf.complex64)
    grad_x = gradient_kernel(kvec, 0)
    grad_y = gradient_kernel(kvec, 1)
    grad_z = gradient_kernel(kvec, 2)
    derivs = [lap, grad_x, grad_y, grad_z]

    mesh_final_field = lpt_prototype(mesh,
                                     initial_conditions,
                                     derivs,
                                     bs=FLAGS.box_size,
                                     nc=FLAGS.nc,
                                     batch_size=FLAGS.batch_size)
    # Lower mesh computation
    lowering = mtf.Lowering(graph, {mesh: mesh_impl})

    # Retrieve output of computation
    result = lowering.export_to_tf_tensor(mesh_final_field)

    with tf.Session() as sess:
        a, b, c = sess.run([initial_conditions, tfinal_field, result])

    if comm.rank == 0:
        np.save('init', a)
        np.save('reference_final', b)
        np.save('mesh_pyramid', c)

        plt.figure(figsize=(15, 3))
        plt.subplot(141)
        plt.imshow(a[0].sum(axis=2))
        plt.title('Initial Conditions')

        plt.subplot(142)
        plt.imshow(b[0].sum(axis=2))
        plt.title('TensorFlow (single GPU)')
        plt.colorbar()

        plt.subplot(143)
        plt.imshow(c[0].sum(axis=2))
        plt.title('Mesh TensorFlow Single')
        plt.colorbar()

        plt.subplot(144)
        plt.imshow((b[0] - c[0]).sum(axis=2))
        plt.title('Residuals')
        plt.colorbar()

        plt.savefig("comparison-single.png")

    exit(0)