tf.reduce_sum(variation_prior.log_prob(tf.cast(variation, tf.float32))), floatX) ld = variation_d.logdens(variation) tf.add_to_collection('logdensities', ld[tf.newaxis]) tf.add_to_collection('priors', pp) tf.summary.histogram('variation', variation) tf.summary.scalar('mean_variation', tf.reduce_mean(variation)) global_inf = DFlow([ NVPFlow(dim=(VAR_DIM * 2 + 1) * VAR_DIM, name='flow_{}'.format(i), aux_vars=variation[tf.newaxis]) for i in range(6) ], init_sigma=0.01) global_prior = Normal(None, sigma=1.).logdens(global_inf.output) tf.add_to_collection('priors', global_prior) tf.add_to_collection('logdensities', global_inf.logdens) individ_variation_prior = Normal((VAR_DIM * 2 + 1) * VAR_DIM, sigma=variation, mu=global_inf.output[0]) models = [] indivs = {} with tf.variable_scope(tf.get_variable_scope(), dtype=floatX, reuse=tf.AUTO_REUSE): for country, data in country_data.items(): with tf.variable_scope(country):