Beispiel #1
0
    def execute(self):
        from os.path import basename
        from flyingpigeon import sdm
        from flyingpigeon.utils import archive, archiveextract  # , get_domain
        from flyingpigeon.visualisation import map_PAmask

        init_process_logger('log.txt')
        self.output_log.setValue('log.txt')

        self.status.set('Start process', 0)

        try:
            self.status.set('reading the arguments', 5)
            resources = archiveextract(
                self.getInputValues(identifier='input_indices'))
            csv_file = self.getInputValues(identifier='gbif')[0]
            period = self.getInputValues(identifier='period')
            period = period[0]
            archive_format = self.archive_format.getValue()
        except:
            logger.error('failed to read in the arguments')

        try:
            self.status.set('read in latlon coordinates', 10)
            latlon = sdm.latlon_gbifcsv(csv_file)
        except:
            logger.exception('failed to extract the latlon points')

        try:
            self.status.set('plot map', 20)
            from flyingpigeon.visualisation import map_gbifoccurrences
            # latlon = sdm.latlon_gbifdic(gbifdic)
            occurence_map = map_gbifoccurrences(latlon)
        except:
            logger.exception('failed to plot occurence map')

        # try:
        #     self.status.set('get domain', 30)
        #     domains = set()
        #     for indice in resources:
        #         # get_domain works only if metadata are set in a correct way
        #         domains = domains.union([basename(indice).split('_')[1]])
        #     if len(domains) == 1:
        #         domain = list(domains)[0]
        #         logger.info('Domain %s found in indices files' % domain)
        #     else:
        #         logger.warn('NOT a single domain in indices files %s' % domains)
        # except:
        #     logger.exception('failed to get domains')

        try:
            # sort indices
            indices_dic = sdm.sort_indices(resources)
            logger.info('indice files sorted for %s Datasets' %
                        len(indices_dic.keys()))
        except:
            msg = 'failed to sort indices'
            logger.exception(msg)
            raise Exception(msg)

        ncs_references = []
        species_files = []
        stat_infos = []
        PAmask_pngs = []

        self.status.set('Start processing for %s Datasets' %
                        len(indices_dic.keys()))
        for count, key in enumerate(indices_dic.keys()):
            try:
                staus_nr = 40 + count * 10
                self.status.set('Start processing of %s' % key, staus_nr)
                ncs = indices_dic[key]
                logger.info('with %s files' % len(ncs))

                try:
                    self.status.set('generating the PA mask', 20)
                    PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0])
                    logger.info('PA mask sucessfully generated')
                except:
                    logger.exception('failed to generate the PA mask')

                try:
                    self.status.set('Ploting PA mask', 25)
                    PAmask_pngs.extend([map_PAmask(PAmask)])
                except:
                    logger.exception('failed to plot the PA mask')

                try:
                    ncs_reference = sdm.get_reference(ncs_indices=ncs,
                                                      period=period)
                    ncs_references.extend(ncs_reference)
                    logger.info('reference indice calculated %s ' %
                                ncs_references)
                    self.status.set('reference indice calculated',
                                    staus_nr + 2)
                except:
                    msg = 'failed to calculate the reference'
                    logger.exception(msg)
                    # raise Exception(msg)

                try:
                    gam_model, predict_gam, gam_info = sdm.get_gam(
                        ncs_reference, PAmask, modelname=key)
                    stat_infos.append(gam_info)
                    self.status.set('GAM sucessfully trained', staus_nr + 5)
                except:
                    msg = 'failed to train GAM for %s' % (key)
                    logger.exception(msg)

                try:
                    prediction = sdm.get_prediction(gam_model, ncs)
                    self.status.set('prediction done', staus_nr + 7)
                except:
                    msg = 'failed to predict tree occurence'
                    logger.exception(msg)
                    # raise Exception(msg)

                # try:
                #     self.status.set('land sea mask for predicted data', staus_nr + 8)
                #     from numpy import invert, isnan, nan, broadcast_arrays  # , array, zeros, linspace, meshgrid
                #     mask = invert(isnan(PAmask))
                #     mask = broadcast_arrays(prediction, mask)[1]
                #     prediction[mask is False] = nan
                # except:
                #     logger.exception('failed to mask predicted data')

                try:
                    species_files.append(sdm.write_to_file(ncs[0], prediction))
                    logger.info('Favourabillity written to file')
                except:
                    msg = 'failed to write species file'
                    logger.exception(msg)
                    # raise Exception(msg)
            except:
                msg = 'failed to process SDM chain for %s ' % key
                logger.exception(msg)
                # raise Exception(msg)

        try:
            archive_references = None
            archive_references = archive(ncs_references, format=archive_format)
            logger.info('indices 2D added to archive')
        except:
            msg = 'failed adding 2D indices to archive'
            logger.exception(msg)
            raise Exception(msg)

        archive_predicion = None
        try:
            archive_predicion = archive(species_files, format=archive_format)
            logger.info('species_files added to archive')
        except:
            msg = 'failed adding species_files indices to archive'
            logger.exception(msg)
            raise Exception(msg)

        try:
            from flyingpigeon.visualisation import pdfmerge, concat_images
            stat_infosconcat = pdfmerge(stat_infos)
            logger.debug('pngs %s' % PAmask_pngs)
            PAmask_png = concat_images(PAmask_pngs, orientation='h')
            logger.info('stat infos pdfs and mask pngs merged')
        except:
            logger.exception('failed to concat images')
            _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf',
                                                   prefix='foobar-',
                                                   dir='.')
            _, PAmask_png = tempfile.mkstemp(suffix='.png',
                                             prefix='foobar-',
                                             dir='.')

        self.output_gbif.setValue(occurence_map)
        self.output_PA.setValue(PAmask_png)
        self.output_reference.setValue(archive_references)
        self.output_prediction.setValue(archive_predicion)
        self.output_info.setValue(stat_infosconcat)
        self.status.set('done', 100)
Beispiel #2
0
    predict_gam = mgcv.predict_gam(gam_model, newdata=dataf,
                                   type="response", progress="text",
                                   newdata_guaranteed=True, na_action=stats.na_pass)
    prediction = array(predict_gam).reshape(dims)
    return prediction



tic = dt.now()

indices = '/home/nils/data/sdm/tmpTzDdv7.tar'

gbif = '/home/nils/data/sdm/acacia_albida.csv'

gbif_url = 'https://bovec.dkrz.de/download/wpsoutputs/flyingpigeon/392f1c34-b4d1-11e7-a589-109836a7cf3a/tmp95yvix.csv'
latlon = sdm.latlon_gbifcsv(gbif)
latlon

occurence_map = map_gbifoccurrences(latlon)
occurence_map
ncs = archiveextract(indices)
ncs
indices_dic = sdm.sort_indices(ncs)
indices_dic
PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0])
PAmask

# PAmask_pngs.extend([map_PAmask(PAmask)])

map_PAmask(PAmask)
ncs_reference = sdm.get_reference(ncs_indices=ncs)
Beispiel #3
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'
        response.update_status('Start process', 0)

        try:
            LOGGER.info('reading the arguments')
            resources = archiveextract(
                resource=rename_complexinputs(request.inputs['resource']))
            period = request.inputs['period']
            period = period[0].data
            indices = [inpt.data for inpt in request.inputs['indices']]
            archive_format = request.inputs['archive_format'][0].data
            LOGGER.info(
                "all arguments read in nr of files in resources: {}".foirmat(
                    len(resources)))
        except Exception as ex:
            msg = 'failed to read in the arguments: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            gbif_url = request.inputs['gbif'][0].data
            csv_file = download(gbif_url)
            LOGGER.info('CSV file fetched sucessfully: %s' % csv_file)
        except Exception as ex:
            msg = 'failed to fetch GBIF file: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            response.update_status('read in latlon coordinates', 10)
            latlon = sdm.latlon_gbifcsv(csv_file)
            LOGGER.info('got occurence coordinates %s ' % csv_file)
        except Exception as ex:
            msg = 'failed to extract the latlon points from file {}: {}'.format(
                csv_file, str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            response.update_status('plot map', 20)
            occurence_map = map_gbifoccurrences(latlon)
            LOGGER.info('GBIF occourence ploted')
        except Exception as ex:
            msg = 'failed to plot occurence map: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)

        #################################
        # calculate the climate indices
        #################################

        # get the indices
        try:
            response.update_status('start calculation of indices', 30)
            ncs_indices = sdm.get_indices(resource=resources, indices=indices)
            LOGGER.info('indice calculation done')
        except Exception as ex:
            msg = 'failed to calculate indices: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            # sort indices
            indices_dic = sdm.sort_indices(ncs_indices)
            LOGGER.info('indice files sorted in dictionary')
        except Exception as ex:
            msg = 'failed to sort indices: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)
            indices_dic = {'dummy': []}

        ncs_references = []
        species_files = []
        stat_infos = []
        PAmask_pngs = []

        response.update_status('Start processing for {} datasets'.format(
            len(indices_dic.keys())))
        for count, key in enumerate(indices_dic.keys()):
            try:
                status_nr = 40 + count * 10
                response.update_status('Start processing of {}'.format(key),
                                       status_nr)

                ncs = indices_dic[key]
                LOGGER.info('with {} files'.format(len(ncs)))

                try:
                    response.update_status('generating the PA mask', 20)
                    PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0])
                    LOGGER.info('PA mask sucessfully generated')
                except Exception as ex:
                    msg = 'failed to generate the PA mask: {}'.format(str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

                try:
                    response.update_status('Ploting PA mask', 25)
                    PAmask_pngs.extend([map_PAmask(PAmask)])
                except Exception as ex:
                    msg = 'failed to plot the PA mask: {}'.format(str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

                try:
                    ncs_reference = sdm.get_reference(ncs_indices=ncs,
                                                      period=period)
                    ncs_references.extend(ncs_reference)
                    LOGGER.info('reference indice calculated {}'.format(
                        ncs_references))
                except Exception as ex:
                    msg = 'failed to calculate the reference: {}'.format(
                        str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

                try:
                    gam_model, predict_gam, gam_info = sdm.get_gam(
                        ncs_reference, PAmask)
                    stat_infos.append(gam_info)
                    response.update_status('GAM sucessfully trained',
                                           status_nr + 5)
                except Exception as ex:
                    msg = 'failed to train GAM for {}: {}'.format(key, str(ex))
                    LOGGER.debug(msg)
                    raise Exception(msg)

                try:
                    prediction = sdm.get_prediction(gam_model, ncs)
                    response.update_status('prediction done', status_nr + 7)
                except Exception as ex:
                    msg = 'failed to predict tree occurence: {}'.format(
                        str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)
                #
                # try:
                #     response.update_status('land sea mask for predicted data',  status_nr + 8)
                #     from numpy import invert, isnan, nan, broadcast_arrays  # , array, zeros, linspace, meshgrid
                #     mask = invert(isnan(PAmask))
                #     mask = broadcast_arrays(prediction, mask)[1]
                #     prediction[mask is False] = nan
                # except:
                #     LOGGER.debug('failed to mask predicted data')

                try:
                    species_files.append(sdm.write_to_file(ncs[0], prediction))
                    LOGGER.info('Favourability written to file')
                except Exception as ex:
                    msg = 'failed to write species file: {}'.format(str(ex))
                    LOGGER.debug(msg)
                    raise Exception(msg)

            except Exception as ex:
                msg = 'failed to process SDM chain for {} : {}'.format(
                    key, str(ex))
                LOGGER.exception(msg)
                raise Exception(msg)

        try:
            archive_indices = archive(ncs_indices, format=archive_format)
            LOGGER.info('indices added to archive')
        except Exception as ex:
            msg = 'failed adding indices to archive: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)
            archive_indices = tempfile.mkstemp(suffix='.tar',
                                               prefix='foobar-',
                                               dir='.')

        try:
            archive_references = archive(ncs_references, format=archive_format)
            LOGGER.info('indices reference added to archive')
        except Exception as ex:
            msg = 'failed adding reference indices to archive: {}'.format(
                str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)
            archive_references = tempfile.mkstemp(suffix='.tar',
                                                  prefix='foobar-',
                                                  dir='.')

        try:
            archive_prediction = archive(species_files, format=archive_format)
            LOGGER.info('species_files added to archive')
        except Exception as ex:
            msg = 'failed adding species_files indices to archive: {}'.format(
                str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            stat_infosconcat = pdfmerge(stat_infos)
            LOGGER.debug('pngs {}'.format(PAmask_pngs))
            PAmask_png = concat_images(PAmask_pngs, orientation='h')
            LOGGER.info('stat infos pdfs and mask pngs merged')
        except Exception as ex:
            msg = 'failed to concat images: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)
            _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf',
                                                   prefix='foobar-',
                                                   dir='.')
            _, PAmask_png = tempfile.mkstemp(suffix='.png',
                                             prefix='foobar-',
                                             dir='.')

        # self.output_csv.setValue(csv_file)
        response.outputs['output_gbif'].file = occurence_map
        response.outputs['output_PA'].file = PAmask_png
        response.outputs['output_indices'].file = archive_indices
        response.outputs['output_reference'].file = archive_references
        response.outputs['output_prediction'].file = archive_prediction
        response.outputs['output_info'].file = stat_infosconcat

        response.update_status('done', 100)
        return response
Beispiel #4
0
    def execute(self):

        init_process_logger('log.txt')
        self.output_log.setValue('log.txt')

        from os.path import basename
        from flyingpigeon import sdm
        from flyingpigeon.utils import archive, archiveextract, download
        self.status.set('Start process', 0)

        try:
            logger.info('reading the arguments')
            resources_raw = self.getInputValues(identifier='resources')
            csv_url = self.getInputValues(identifier='gbif')[0]
            period = self.getInputValues(identifier='period')
            period = period[0]
            indices = self.getInputValues(identifier='input_indices')
            archive_format = self.archive_format.getValue()
            logger.info('indices %s ' % indices)
            logger.debug('csv_url %s' % csv_url)
        except Exception as e:
            logger.error('failed to read in the arguments %s ' % e)
            raise

        try:
            logger.info('set up the environment')
            csv_file = download(csv_url)
            resources = archiveextract(resources_raw)
        except Exception as e:
            logger.error('failed to set up the environment %s ' % e)
            raise

        try:
            self.status.set('read in latlon coordinates', 10)
            latlon = sdm.latlon_gbifcsv(csv_file)
            logger.info('got occurence coordinates %s ' % csv_file)
        except Exception as e:
            logger.exception(
                'failed to extract the latlon points from file: %s: %s' %
                (csv_file, e))

        try:
            self.status.set('plot map', 20)
            from flyingpigeon.visualisation import map_gbifoccurrences

            # latlon = sdm.latlon_gbifdic(gbifdic)
            occurence_map = map_gbifoccurrences(latlon)
        except Exception as e:
            logger.exception('failed to plot occurence map %s' % e)

        #################################
        # calculate the climate indices
        #################################

        # get the indices
        ncs_indices = None
        try:
            self.status.set(
                'start calculation of climate indices for %s' % indices, 30)
            ncs_indices = sdm.get_indices(resources=resources, indices=indices)
            logger.info('indice calculation done')
        except:
            msg = 'failed to calculate indices'
            logger.exception(msg)
            raise Exception(msg)

        try:
            self.status.set('get domain', 30)
            domains = set()
            for resource in ncs_indices:
                # get_domain works only if metadata are set in a correct way
                domains = domains.union([basename(resource).split('_')[1]])
            if len(domains) == 1:
                domain = list(domains)[0]
                logger.debug('Domain %s found in indices files' % domain)
            else:
                logger.error('Not a single domain in indices files %s' %
                             domains)
        except Exception as e:
            logger.exception('failed to get domains %s' % e)

        try:
            self.status.set('generating the PA mask', 20)
            PAmask = sdm.get_PAmask(coordinates=latlon, domain=domain)
            logger.info('PA mask sucessfully generated')
        except Exception as e:
            logger.exception('failed to generate the PA mask: %s' % e)

        try:
            self.status.set('Ploting PA mask', 25)
            from flyingpigeon.visualisation import map_PAmask
            PAmask_png = map_PAmask(PAmask)
        except Exception as e:
            logger.exception('failed to plot the PA mask: %s' % e)

        try:
            # sort indices
            indices_dic = None
            indices_dic = sdm.sort_indices(ncs_indices)
            logger.info('indice files sorted for %s Datasets' %
                        len(indices_dic.keys()))
        except:
            msg = 'failed to sort indices'
            logger.exception(msg)
            raise Exception(msg)

        ncs_references = []
        species_files = []
        stat_infos = []

        for count, key in enumerate(indices_dic.keys()):
            try:
                staus_nr = 40 + count * 10
                self.status.set('Start processing of %s' % key, staus_nr)
                ncs = indices_dic[key]
                logger.info('with %s files' % len(ncs))
                try:
                    ncs_reference = sdm.get_reference(ncs_indices=ncs,
                                                      period=period)
                    ncs_references.extend(ncs_reference)
                    logger.info('reference indice calculated %s ' %
                                ncs_references)
                except:
                    msg = 'failed to calculate the reference'
                    logger.exception(msg)
                    raise Exception(msg)

                try:
                    gam_model, predict_gam, gam_info = sdm.get_gam(
                        ncs_reference, PAmask)
                    stat_infos.append(gam_info)
                    self.status.set('GAM sucessfully trained', staus_nr + 5)
                except Exception as e:
                    msg = 'failed to train GAM for %s : %s' % (key, e)
                    logger.debug(msg)

                try:
                    prediction = sdm.get_prediction(gam_model, ncs)
                    self.status.set('prediction done', staus_nr + 7)
                except Exception as e:
                    msg = 'failed to predict tree occurence %s' % e
                    logger.exception(msg)
                    # raise Exception(msg)

                try:
                    self.status.set('land sea mask for predicted data',
                                    staus_nr + 8)
                    from numpy import invert, isnan, nan, broadcast_arrays  # , array, zeros, linspace, meshgrid
                    mask = invert(isnan(PAmask))
                    mask = broadcast_arrays(prediction, mask)[1]
                    prediction[mask is False] = nan
                except Exception as e:
                    logger.debug('failed to mask predicted data: %s' % e)

                try:
                    species_files.append(sdm.write_to_file(ncs[0], prediction))
                    logger.info('Favourabillity written to file')
                except Exception as e:
                    msg = 'failed to write species file %s' % e
                    logger.debug(msg)
                    # raise Exception(msg)

            except Exception as e:
                msg = 'failed to calculate reference indices. %s ' % e
                logger.exception(msg)
                raise Exception(msg)

        try:
            archive_indices = None
            archive_indices = archive(ncs_indices, format=archive_format)
            logger.info('indices added to archive')
        except:
            msg = 'failed adding indices to archive'
            logger.exception(msg)
            raise Exception(msg)

        archive_references = None
        try:
            archive_references = archive(ncs_references, format=archive_format)
            logger.info('indices reference added to archive')
        except:
            msg = 'failed adding reference indices to archive'
            logger.exception(msg)
            raise Exception(msg)

        archive_predicion = None
        try:
            archive_predicion = archive(species_files, format=archive_format)
            logger.info('species_files added to archive')
        except:
            msg = 'failed adding species_files indices to archive'
            logger.exception(msg)
            raise Exception(msg)

        try:
            from flyingpigeon.visualisation import pdfmerge
            stat_infosconcat = pdfmerge(stat_infos)
            logger.info('stat infos pdfs merged')
        except:
            logger.exception('failed to concat images')
            _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf',
                                                   prefix='foobar-',
                                                   dir='.')

        # self.output_csv.setValue(csv_file)
        self.output_gbif.setValue(occurence_map)
        self.output_PA.setValue(PAmask_png)
        self.output_indices.setValue(archive_indices)
        self.output_reference.setValue(archive_references)
        self.output_prediction.setValue(archive_predicion)
        self.output_info.setValue(stat_infosconcat)

        self.status.set('done', 100)