def masked_bin_eval(dim1_indices, dimN_bins, dimN_vals):
    dimN_indices = np.empty_like(dim1_indices)
    for i in np.unique(dim1_indices):
        idx = np.where(dim1_indices == i)
        dimN_indices[idx] = np.clip(
            np.searchsorted(dimN_bins[i], dimN_vals[idx], side='right') - 1, 0,
            len(dimN_bins[i]) - 2)
    return dimN_indices
Beispiel #2
0
def parseGeneratorHistory(gp_pdgId_in,gp_parent_in):
    inChain = activePdgIds
    #index manipulation
    offsets = gp_pdgId_in.offsets
    parents = gp_pdgId_in.parents
    pstarts = offsets[parents].astype('i4')
    gp_pdgId = gp_pdgId_in.content
    gp_ancestor = gp_parent_in.content + pstarts
    gp_ancestor_valid = (gp_parent_in.content >= 0)

    #create parentage bitmaps
    gp_pdgId_mapped = np.zeros(shape=gp_pdgId.shape, dtype='u4')
    for pdgId, bit in inChain.items():
        if abs(pdgId) == 24:
            gp_pdgId_mapped[gp_pdgId==pdgId] = bit
        else:
            gp_pdgId_mapped[np.abs(gp_pdgId)==pdgId] = bit
    
    gp_proc = np.zeros(shape=gp_pdgId.shape, dtype='u4')

    pdg_tmp = np.empty_like(gp_pdgId_mapped)
    parent_tmp = np.empty_like(gp_ancestor)
    niter = 0
    while np.any(gp_ancestor_valid) and niter < 50:
        np.take(gp_pdgId_mapped, gp_ancestor, out=pdg_tmp, mode='clip')
        np.take(gp_parent_in.content, gp_ancestor, out=parent_tmp, mode='clip')
        np.bitwise_or(gp_proc, pdg_tmp, where=gp_ancestor_valid, out=gp_proc)
        np.bitwise_and(gp_ancestor_valid, parent_tmp>=0, where=gp_ancestor_valid, out=gp_ancestor_valid)
        np.add(parent_tmp, pstarts, out=gp_ancestor)
        niter += 1

    #print 'Parsed ancestor tree in %d iterations'%niter

    if niter == 50 and np.any(gp_ancestor_valid):
        raise Exception('reached 50 iterations, gen particles not trustable')

    return awkward.JaggedArray.fromoffsets(offsets, gp_proc)
Beispiel #3
0
def poisson_interval(sumw, sumw2, coverage=_coverage1sd):
    """
        sumw: sum of weights
        sumw2: sum weights**2
        coverage: coverage, default to 68%

        The so-called 'Garwood' interval
            c.f. https://www.ine.pt/revstat/pdf/rs120203.pdf
            or http://ms.mcmaster.ca/peter/s743/poissonalpha.html
        For weighted data, approximate the observed count by sumw**2/sumw2
            This choice effectively scales the unweighted poisson interval by the average weight
            Maybe not the best... see https://arxiv.org/pdf/1309.1287.pdf for a proper treatment
        When a bin is zero, find the scale of the nearest nonzero bin
        If all bins zero, raise warning and set interval to sumw
    """
    scale = np.empty_like(sumw)
    scale[sumw != 0] = sumw2[sumw != 0] / sumw[sumw != 0]
    if np.sum(sumw == 0) > 0:
        missing = np.where(sumw == 0)
        available = np.nonzero(sumw)
        if len(available[0]) == 0:
            warnings.warn(
                "All sumw are zero!  Cannot compute meaningful error bars",
                RuntimeWarning)
            return np.vstack([sumw, sumw])
        nearest = sum([
            np.subtract.outer(d, d0)**2 for d, d0 in zip(available, missing)
        ]).argmin(axis=0)
        argnearest = tuple(dim[nearest] for dim in available)
        scale[missing] = scale[argnearest]
    counts = sumw / scale
    lo = scale * scipy.stats.chi2.ppf((1 - coverage) / 2, 2 * counts) / 2.
    hi = scale * scipy.stats.chi2.ppf(
        (1 + coverage) / 2, 2 * (counts + 1)) / 2.
    interval = np.array([lo, hi])
    interval[interval == np.nan] = 0.  # chi2.ppf produces nan for counts=0
    return interval