def test_generator(self):
        appear = {'Tzmin' : fr(1,3), 'Tzmax' : fr(2,3)}
        process = {'Tzmin' : fr(1,1), 'Tzmax' : fr(6,1)}

        testing_subject = cs.generate_programm(appear, process)
        while():
            print(testing_subject())
Beispiel #2
0
def lagrangePolySpecialised(xs,ys):
  ''' Lagrange interpolating polynomial, restricted to points on the integers
  1,...,n.  I.e. the xs argument is assumed to represent the integers 1 to n and
  the ys are assumed to be integer values.
'''
  if len(xs) == 1:
    return [ fr(ys[0],1) ]
  
  a,b = 0, len(xs)-1
  aa, bb = math.factorial(a), math.factorial(b)
  denom = pow(-1L, len(xs)-1)*aa*bb
  
  # lagrange poly is a sum of products. Each one has a denominator of the form
  # m! n! (-1)^n where m+n+1 = no of points. (I think)
  
  # Accumulate the coefficients as fractions.
  fracSum = [ fr(0,1) ] * len(xs)

  for k in range(len(xs)):
    # Find numerator term, this is a polynomial whose roots are the x values
    # except for one (the k index one).
    xx = xs[:k] + xs[k+1:]
    p = np.poly1d(xx,True)
    
    
    pCoeffs = map(long, p.coeffs)
    coeffFracs = map(lambda u: fr(u*ys[k], denom) , pCoeffs)
    summands = zip(fracSum, coeffFracs)
    fracSum = [x + y for (x,y) in summands]
    
    a = a + 1
    denom = -1L * denom * a / b
    b = max(1, b - 1)
  return fracSum
def q(i):
    a=fr(4,1)
    b=fr(425,100)
    for j in range(i):
        c=fr(108,1)-(fr(815,1)-fr(1500,1)/a)/b
        a,b=b,c
    a=a.limit_denominator()
    print('предел последовательности', a)
def backward_substitution(U, y):
    n = np.shape(y)[0]
    x = np.zeros([n, 1], fr)
    for i in reversed(range(n)):
        temp = 0
        for j in reversed(range(i + 1, n)):
            temp += U[i, j] * x[j, 0]
        x[i, 0] = fr(y[i, 0] - temp) / fr(U[i, i])
    return x
Beispiel #5
0
def divide_pie(groups):
    quantity = sum(abs(x) for x in groups)
    results = [fr(1)]

    for g in groups:
        if g < 0:
            results.append(results[-1] * fr(quantity + g, quantity))
        else:
            results.append(results[-1] - fr(g, quantity))
    return [[f.numerator, f.denominator] for f in results]
def divide_pie(groups):
    quantity = sum(abs(x) for x in groups)
    results = [fr(1)]

    for g in groups:
        if g < 0:
            results.append(results[-1] * fr(quantity + g, quantity))
        else:
            results.append(results[-1] - fr(g, quantity))
    return [[f.numerator, f.denominator] for f in results]
Beispiel #7
0
def lagrange(xl, yl):
	k = len(xl)
	L = P([fr(0, 1)])
	for j in range(k):
		lj = P([fr(1, 1)])
		xj = xl[j]
		for i in range(k):
			xi = xl[i]
			if i != j:
				lj = lj * P([fr(- xi, xj - xi), fr(1, xj - xi)])
		L = L + fr(yl[j], 1) * lj
	return L
Beispiel #8
0
def mean_mode():
  a=[12,15,10,3,5]
  print (st.mean(a)) #mean tính giá trị trung bình

  a=[fr(12.35),fr(1.54),fr(2,17),fr()]
  print (st.mean(a))
  
  data_points = [ ran.randint(1, 100) for x in range(1,1001) ]
  print (st.mean(data_points))
 
  data_points = [ ran.triangular(1, 100, 80) for x in range(1,1001) ]
  print (st.mean(data_points))
  
  print(st.mode(["cat", "dog", "dog", "cat", "monkey", "monkey", "dog"]))
Beispiel #9
0
def expression():  #随机生成表达式
    symbol = ['+', '-', '*', '/']
    brackets = ['(', '', ')']
    # 随机产生计算符
    s1 = randint(0, 2)
    s2 = randint(0, 3)
    s3 = randint(0, 3)
    #随机产生括号bt表示左括号,br表示右括号
    bt1 = randint(0, 1)
    bt2 = randint(0, 1)
    bt3 = randint(0, 1)
    br1 = randint(1, 2)
    br2 = randint(1, 2)
    br3 = randint(1, 2)
    if bt1 == 0:
        bt2 = 1
        bt3 = 1
        if br1 == 2:
            br2 = 1
            br3 = 1
        else:
            br2 = 2
            br3 = 1
    else:
        if bt2 == 0:
            bt3 = 1
            br1 = 1
            if (br2 == 2):
                br3 = 1
            else:
                br3 = 2
        else:
            bt3 = 0
            br1 = 1
            br2 = 1
            br3 = 2
    num1 = uf(0, 1)
    # 对随机产生的分子分母做最大限制
    num1 = fr(num1).limit_denominator(10)
    num2 = uf(0, 1)
    num2 = fr(num2).limit_denominator(10)
    num3 = randint(1, 10)
    num4 = randint(1, 10)
    # 产生随机表达式
    ran_exp = brackets[bt1] + str(num1) + symbol[s1] + brackets[bt2] + str(num2) + brackets[br1] + \
              symbol[s2] + brackets[bt3] + str(num3) + brackets[br2] + symbol[s3] + str(num4) + brackets[br3]
    ran_exp = str(ran_exp)
    return ran_exp
Beispiel #10
0
def inverse(material):
    tmat = transposition(material)
    mat_inv = []
    for i in range(len(tmat)):
        values = [fr(int(i == j), 1) for j in range(len(material))]
        mat_inv.append(gauss_theme(tmat, values))
    return mat_inv
Beispiel #11
0
    def _calc_quantity(self, e):
        day = self.days.Value
        dosage = self.dosage_per.Value
        time = self.times.Value
        drug = self.drugpicker.drugWH
        try:
            assert day != 0
            assert dosage != ''
            assert time != ''
            assert drug is not None
            day = int(day)
            time = int(time)
            if "/" in dosage:
                dosage = fr(dosage)
            elif "." in dosage:
                dosage = float(dosage)
            else:
                dosage = int(dosage)
            if drug.sale_unit == 'chai':
                qty = '1'
            else:
                qty = math.ceil(dosage * time * day)

            self.quantity.ChangeValue(str(qty))
            self.usage.ChangeValue("Ngày {} {} lần, lần {} {}".format(
                drug.usage, time, dosage, drug.usage_unit))
        except AssertionError:
            pass
Beispiel #12
0
def form_change(material):
    new_list = list(map(sum, material))
    boolean_indices = list(map(lambda x: x == 0, new_list))
    indices = set([i for i, x in enumerate(boolean_indices) if x])
    new_material = []
    for i in range(len(material)):
        new_material.append(
            list(
                map(
                    lambda x: fr(0, 1)
                    if (new_list[i] == 0) else observe(x, new_list[i]),
                    material[i])))
    transform_material = []
    zeros_mat = []
    for i in range(len(new_material)):
        if i not in indices:
            transform_material.append(new_material[i])
        else:
            zeros_mat.append(new_material[i])
    transform_material.extend(zeros_mat)
    tmat = []
    for i in range(len(transform_material)):
        tmat.append([])
        extend_mat = []
        for j in range(len(transform_material)):
            if j not in indices:
                tmat[i].append(transform_material[i][j])
            else:
                extend_mat.append(transform_material[i][j])
        tmat[i].extend(extend_mat)
    return [tmat, len(zeros_mat)]
Beispiel #13
0
def PageRank(input_network, d=fr(17,20), iter_limit=1000, p=1000000000):
    '''1/p is proportional difference threshold between iterations
    i.e. |old-new|/old. iteration stops when iter_limit is reached
    or the largest proportional difference is less than 1/p.'''
    
    #First we check out input, make sure it's well-formed
    if d<=0 or d>1:
        raise ValueError('invalid value "'+str(d)+'" for d; must be in (0,1]')
    if p!=int(p) or p<1:
        raise ValueError(p,'must be a natural number (ideally a large one).')
    net = open(input_network,'r').read().splitlines()
    n = len(net)
    if any([len(row)!=n or any([char!='1' and char!='0' for char in row]) for row in net]):
        raise TypeError('PageRank input must be a square of 1\'s and 0\'s.')
    if any([net[i][i]!='0' for i in range(n)]):
        raise TypeError('Pages can\'t link to themselves.')

    #Next, we set up the initial state, in the form of dictionaries
    #vertex to outgoing link count first
    
    outgoing = dict([(i,sum([int(char) for char in net[i]])) for i in range(n)])
    old = dict([(i,fr(1,n)) for i in range(n)])#vertex to current value
    new = dict()#vertex to new value
    D = fr(1-d,n)
    
    #Finally, the core of the algorithm
    i = 0
    while i < iter_limit:
        new = dict([
            (i,
                 D+d*sum([int(net[j][i])*old[j]/outgoing[j] for j in range(n)])
            ) for i in range(n)
        ])
        if p==0 and new==old:
            break
        elif all([ abs((old[i]-new[i])/old[i]) < fr(1,p) for i in range(n) ]):
            break
        old = copy(new)
        i += 1
    if i==iter_limit:
        print('Warning: iter_limit reached. Series did not converge.')
    else:
        print('Iteration count:',i)
    for i in range(n):
        print('PR('+str(i)+') = '+str(round(float(new[i]),4)))
    return new
Beispiel #14
0
def copy_material(material):
    c_material = []
    for i in range(len(material)):
        c_material.append([])
        for j in range(len(material[i])):
            c_material[i].append(
                fr(material[i][j].numerator, material[i][j].denominator))
    return c_material
def forward_substitution(L, b):
    n = np.shape(b)[0]
    y = np.zeros([n, 1], fr)
    for i in range(n):
        temp = 0
        for j in range(i):
            temp += L[i, j] * y[j, 0]
        y[i, 0] = fr(b[i, 0] - temp)
    return y
Beispiel #16
0
def material_multiplication(mat1, mat2):
    res = []
    for i in range(len(mat1)):
        res.append([])
        for j in range(len(mat2[0])):
            res[i].append(fr(0, 1))
            for k in range(len(mat1[0])):
                res[i][j] += mat1[i][k] * mat2[k][j]
    return res
def lu_factor(A):
    [n, n1] = np.shape(A)
    if n != n1:
        print("Error: Squared matrix needed")
    L = np.eye(n, n, 0, fr)
    U = np.zeros([n, n], fr)

    for i in range(n):
        for j in range(i, n):
            temp = fr(0)
            for k in range(i):
                temp += L[i, k] * U[k, j]
            U[i, j] = A[i, j] - temp
        for j in range(i + 1, n):
            temp = fr(0)
            for k in range(i): 
                temp += L[j, k] * U[k, i]
            L[j, i] = A[j, i] - temp
            L[j, i] = L[j, i] / U[i, i]

    return [L, U]
def hilbert(n):
    hilber_fr = np.ones([n, n], fr)
    for i in range(n):
        for j in range(n):
            hilber_fr[i, j] = 1 / fr(i + j + 1)
    
    hilbert_float = np.ones([n, n], float)
    for i in range(n):
        for j in range(n):
            hilbert_float[i, j] = 1 / (i + j + 1)
    
    print("H * myinverse(H): ")
    printFractionMatrix(np.dot(hilber_fr, myinverse(hilber_fr)))
    print("H * inv(H): ")
    hinv = np.linalg.inv(hilbert_float)
    printFractionMatrix(np.dot(hilbert_float, hinv))
Beispiel #19
0
def interpolate(pointList):
    size = len(pointList)
    if len(pointList) == 1:
        return (fr(pointList[0][1]),)
    result = [fr(0)]
    for index_i in range(0, size):
        x_i = fr(pointList[index_i][0])
        y_i = fr(pointList[index_i][1])
        member = [y_i]
        for index_j in range(0, size):
            if index_i == index_j:
                continue
            x_j = fr(pointList[index_j][0])
            member = polymul(member, [-x_j, fr(1)])
            multiplier = [fr(1, x_i - x_j)]
            member = polymul(member, multiplier)
        result = polyadd(result, member)
    return result
Beispiel #20
0
def random_linedrug(k=10):
    li = []
    for i in range(k):
        for j in sample(list(range(15)), k=choices([1, 2, 3])[0]):
            a = choices(['1/3', '0.5', '2'])[0]
            b = choices([1, 2, 3])[0]
            try:
                quantity = float(a) * b
            except ValueError:
                quantity = fr(a) * b
            if sample_drugs[j][3] == "chai":
                quantity = 1
            li.append(
                LineDrug(
                    drug_id=j + 1,
                    dosage_per=a,
                    times=b,
                    quantity=math.ceil(quantity),
                    usage=
                    f"Ngày {sample_drugs[j][5]} {b} lần, lần {a} {sample_drugs[j][2]}",
                    visit_id=i + 1))
    return li
def fraccionmulti():
    num1 = fr(simpledialog.askstring("FRACCIONES", "Ingresa el primer numero"))
    num2 = fr(simpledialog.askstring("FRACCIONES", "Ingresa el segundo numero"))
    output = num1*num2
Beispiel #22
0
"""
This module defines the way expressions are built, relative to the syntax of the C operators.
You can modify then to change the way expressions are created.
However, do not change their names, since a naming convention is used (i.e., reflection).
"""


from fractions import Fraction as fr

###
# Lvalue operators
###

array_lvalue_operators = {
  ('*', 1): fr('1/4'),
  ('->', 1): fr('1/4'),
  ('.', 1): fr('1/4'),
  ('[]', 2): fr('1/4')
}
if array_lvalue_operators:
  assert sum(array_lvalue_operators.values()) == 1

bool_lvalue_operators = {
  ('*', 1): fr('1/4'),
  ('->', 1): fr('1/4'),
  ('.', 1): fr('1/4'),
  ('[]', 2): fr('1/4')
}
if bool_lvalue_operators:
  assert sum(bool_lvalue_operators.values()) == 1
generation = 1
timeOfLastUpdate = time.process_time()
endAfter = time.process_time(
) + allowedTime  #marks the point when this should stop, by taking the process clock
startTime = endAfter - allowedTime
lastImprovement = 0.0
#before the loop, and adding the number of seconds allowed
bestOf = [parents[0]]  #saves the best of each generation for later display
while time.process_time() < endAfter:  #has the clock hit the ending yet?
    kids = parents[:preserve]  #keep the top however many
    #culling step
    parents = parents[:-1 * cull]
    #big change to this version: make it so the actual cost of the parents is used in generating rank,
    #not just their position.
    invertedCost = []  #takes the "fitness" function role
    totalInvertedCost = fr()  #makes the starting total inverted cost be zero
    for par in parents:
        temp = fr(
            1, int(par.getCost())
        )  #the int is just so that I'm sure the fraction class won't complain
        invertedCost.append(temp)
        totalInvertedCost += temp

    while len(kids) < populationSize and time.process_time(
    ) < endAfter:  #makes sure to break out if spent too much time
        #get the parent IDs
        #first parent
        parentIndex1 = 0
        #make a random fraction between 0 and just less than the total inverted cost
        generatingNumber = fr(RNG.randrange(totalInvertedCost.numerator),
                              totalInvertedCost.denominator)
Beispiel #24
0
 def Maximizar(self):
     self.ids.generarTabla.disabled = True 
     newfMap = self.fMap        
     #Numero de filas y columnas de la tabla
     Nfilas = self.restricciones+3
     Ncolumnas = self.restricciones + self.variables + 2
     #escogemos la ultima fila
     codeUfila = newfMap[Nfilas]
     #escoger al mayor de la ultima fila
     UfilaArr =[]
     
     for i in codeUfila:
         uf = fr(i.text) 
         UfilaArr.append(uf)
     #se le suma uno mas por que los demas arrays tiene en la posicion 0 el numero que se cambia al final
     UfMayor = np.argmax(UfilaArr) +1         
     #escoger los pivotes que dependen del el valor mayor de la ultima fila en la posicion UfMayor 
     #pivotes va a contener la colunma de posicion UfMayor
     pivotes = []
     #reccoro cada fila sin tomar en cuenta las 2 primeras y las dos ultimas
     for i in newfMap:
         if i>1 and i<Nfilas-1:
             #reccoro cada columna escogiendo solo la de la posicion UfMayor que es el mayor
             for idx,j in enumerate(newfMap[i]):
                 if idx==UfMayor:
                     frac = fr(j.text)
                     pivotes.append(frac)
     #con los pivotes optenidos se pasa a dividir todas las filas
     # y guardarlos en un array para saber la columna Bi menor
     MapBiMenor={} 
     for i in newfMap:
         if i>1 and i<Nfilas-1:
             ArrBiMenor=[]
             for idx,j in enumerate(newfMap[i]):
                 col = fr(j.text)
                 division = col/pivotes[i-2]
                 ArrBiMenor.append(division)
             MapBiMenor[i-2]=ArrBiMenor
     #una ves separado y dividio cada fila para su pivote
     #tengo que buscar el menor de la ultima columna Ncolumnas o Bi guardandolo en un arreglo
     ArrBiMenor2 = []
     for i in MapBiMenor:
         for idx,j in enumerate(MapBiMenor[i]):
             #restamos 1 a las columnas por que hay una colunma que no esta incluida
             if idx == Ncolumnas-1:
                 ArrBiMenor2.append(j)
     #obtengo la posicion del menor pero como estamos trabajando en la tabla necesito aumentar las 
     # dos filas iniciales
     idxBiMenor= np.argmin(ArrBiMenor2)+2
     
     #ahora cambiamos los valores toda la fila por la fila de la posicion idxBiMenor
     #reccoremos cada fila del mapa princial excepto las 2 primeras y 2  ultimas
     # crear una arreglo para guardar la fila de Bi menor      
     filaBiMenor =[] 
     for i in self.fMap:
         if i>1 and i<Nfilas-1:
             if idxBiMenor == i:
                 for idx,j in enumerate(self.fMap[i]):
                     if idx ==0:
                         #reemplazamos el valor de la fila 0 con la columna mayor a la fila menor
                         fraction = fr(self.fMap[0][UfMayor-1].text)
                         numerador = fraction.numerator
                         denomina = fraction.denominator
                         value = numerador if denomina == 1 else fraction
                         j.text= str(value)
                         filaBiMenor.append(value)
                     else:
                         fraction = MapBiMenor[i-2][idx]
                         numerador = fraction.numerator
                         denomina = fraction.denominator
                         value = numerador if denomina == 1 else f'{numerador}/{denomina}'
                         j.text= str(value)
                         filaBiMenor.append(fraction)
     #ahora vamos a recorrer todas las filas para las iteracciones sin toca la fila que ya se cambio
     for i in self.fMap:
         if i>1 and i<Nfilas-1:
             if idxBiMenor != i:
                 for idx,j in enumerate(self.fMap[i]):
                     if idx !=0:
                         pivoNeg = -pivotes[i-2]
                         multBiPivo = filaBiMenor[idx]*pivoNeg
                         colIter= fr(j.text)
                         suma = multBiPivo + colIter
                         j.text= str(suma)
     #una vez calculado las filas se pasa a calcular Zj
     #zj es la multiplicacion de la columa 0  para sus filas y el resultado de cada columna se suma
     columna0=[]
     for i in self.fMap:
         if i>1 and i<Nfilas-1:
             for idx,j in enumerate(self.fMap[i]):
                 #print(filas)
                 if idx==0:
                     #este es el valor de la columna 0 
                     fract = fr(j.text)
                     columna0.append(fract)
     filasmultiplicadas ={}
     for i in self.fMap:
         if i>1 and i<Nfilas-1:
             arrfilasMul=[]
             
             for idx,j in enumerate(self.fMap[i]):
                 #print(filas)
                 if idx!=0:
                     fi = columna0[i-2]
                     fc = fr(j.text)
                     mult = fi*fc
                     arrfilasMul.append(mult)
                 else:
                     frac = fr(j.text)
                     arrfilasMul.append(frac)
             filasmultiplicadas[i-2]=arrfilasMul
     nZj=0
     for i in filasmultiplicadas:
         nZj+=np.array(filasmultiplicadas[i])
     Zj =nZj.tolist()
     #reeplazar en la tabla
     for i in self.fMap:
         if i==Nfilas-1:
             for idx,j in enumerate(self.fMap[i]):
                 #print(Zj,Zj[idx+1],j)
                 fraction =Zj[idx+1]
                 numerador = fraction.numerator
                 denomina = fraction.denominator
                 value = numerador if denomina ==1 else f'{numerador}/{denomina}' 
                 j.text = str(value)
         if i== Nfilas:
             for idx,j in enumerate(self.fMap[i]):
                 c0 = fr(self.fMap[0][idx].text)
                 filantepe = fr(self.fMap[i-1][idx].text)
                 resta = c0-filantepe
                 numerador = resta.numerator
                 denomina = resta.denominator
                 value = numerador if denomina ==1 else f'{numerador}/{denomina}' 
                 j.text=str(value)
         
         CjZj = self.fMap[Nfilas]
         arrCjZj = []
         for i in CjZj:
             fraction = fr(i.text)
             arrCjZj.append(fraction)
         a = np.array(arrCjZj)
         termina = (a<=0).all()
         if termina:
             self.show_alert_dialog()
Beispiel #25
0
def observe(x, y):
    g = gcd(x, y)
    return fr(long(x / g), long(y / g))
Beispiel #26
0
    for index_i in range(0, size):
        x_i = fr(pointList[index_i][0])
        y_i = fr(pointList[index_i][1])
        member = [y_i]
        for index_j in range(0, size):
            if index_i == index_j:
                continue
            x_j = fr(pointList[index_j][0])
            member = polymul(member, [-x_j, fr(1)])
            multiplier = [fr(1, x_i - x_j)]
            member = polymul(member, multiplier)
        result = polyadd(result, member)
    return result

polynom = map(lambda e: {True: 1, False: -1}[e%2 == 0], range(0, 11))
result = 0
length = len(polynom)
valueList = map(lambda e: (fr(e), polyval(fr(e), polynom)), range(1, length+1))
#print valueList
for i in range(0, len(polynom)):
    pointList = valueList[:i+1]
    #print pointList
    interpolation = interpolate(pointList)
    for (x, y) in valueList:
        interpolated = polyval(x, interpolation)
        if (interpolated != y):
            result += interpolated
            break

print result
Beispiel #27
0
from fractions import Fraction as fr
import cs
#вывести сюда все константы из условия
appear = {'Tzmin': fr(1, 3), 'Tzmax': fr(2, 3)}
process = {'Tzmin': fr(1, 1), 'Tzmax': fr(6, 1)}


def main():
    now = cs.generate_programm()
    while cs.time <= 3600:
        pass
    print(now)


if __name__ == '__main__':
    main()
Beispiel #28
0
"""Square root convergents
Problem 57
It is possible to show that the square root of two can be expressed as an infinite continued fraction.

 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

By expanding this for the first four iterations, we get:

1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.

In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?"""

from fractions import Fraction as fr

count = 0
x = fr(3, 2)
y = fr(7, 5)
for i in range(3, 1000):
    temp = y
    new_number = fr(x.numerator + y.numerator + y.numerator, x.denominator + 2 * y.denominator)
    x = temp
    y = new_number
    if len(str(x.numerator)) > len(str(x.denominator)):
        count += 1
print count
def simplify(txt):
    return str(fr(txt))
Beispiel #30
0
  # Start of list for returned values returned values
  val = [cs[0]] * nx
  # Iteratively calculate polynomial values
  for c in cs[1::]:
    for i in range(nx):
      val[i] = val[i] * x[i] + c
  return val

##################################################

  
coeffs = np.ones((1,11), dtype=np.longlong)[0]
coeffs[1::2] = -1L
p = np.poly1d(coeffs)

x = map(lambda x: fr(x), range(1,12))
y = p(x)
print 'degree 10 polynomial'
print p
print 'x locations (integers)'
print x
print 'Values of degree 10 polynomial '
print y


sumFITs = 0L

for n in range(1,len(x)):
  p2 = lagrangePolySpecialised(x[0:n],y[0:n])
  
  print 'degree :' , n-1
Beispiel #31
0
        # m is remainder now, process
        # same as Euclid's algo
        m = a % m
        a = t
        t = y

        # Update x and y
        y = x - q * y
        x = t

    # Make x positive
    if (x < 0):
        x = x + m0

    return x


for i in range(int(input())):
    n, k, m = [int(j) for j in input().split()]
    sum = fr(1) / fr(n)
    mult = fr(n - 1) / fr(n)
    n += k
    for j in range(m - 1):
        if (j < m - 2 and n > k):
            n -= k
        else:
            sum = fr(sum) + (fr(mult) * (fr(1) / fr(n)))
            mult = fr(mult) * (fr(n - 1) / fr(n))
            n += k
    print(round((sum.numerator * modi(sum.denominator, l)) % l))
Beispiel #32
0
    p = power(x, y // 2, m) % m
    p = (p * p) % m

    if (y % 2 == 0):
        return p
    else:
        return ((x * p) % m)

    # Function to return gcd of a and b


def gcd(a, b):
    if (a == 0):
        return b

    return gcd(b % a, a)


# This code is contributed by Nikita Tiwari.

for i in range(b):
    q = int(input())
    #ans=2**(countSetBits(q))-1
    ans = 0
    for jj in arr:
        if jj | q == q:
            ans += 1
    new = fr(ans, a)
    aa = modInverse(new.denominator, m)
    print(aa * ans.numerator % m)
Beispiel #33
0
def test_fr_dec():
  print (fr(1.13))
  getcontext().prec = 6 #using decimal *
  print (dec(1)/dec(7))
def fraccionresta():
    num1 = fr(simpledialog.askstring("FRACCIONES", "Ingresa el primer numero"))
    num2 = fr(simpledialog.askstring("FRACCIONES", "Ingresa el segundo numero"))
    output = num1-num2
    messagebox.showinfo("Resultado",(str(output)))
Beispiel #35
0
from statistics import mean
from fractions import Fraction as fr

data1 = (11, 3, 4, 5, 7, 9, 2)

data2 = (-1, -2, -4, -7, -12, -19)

data3 = (-1, -13, -6, 4, 5, 19, 9)

data4 = (fr(1, 2), fr(44, 12), fr(10, 3), fr(2, 3))

data5 = {1:"one", 2:"two", 3:"three"}

print("Mean of data set 1 is % s" % (mean(data1)))
print("Mean of data set 2 is % s" % (mean(data2)))
print("Mean of data set 3 is % s" % (mean(data3)))
print("Mean of data set 4 is % s" % (mean(data4)))
print("Mean of data set 5 is % s" % (mean(data5)))






#data = [2,3,6,4,7,5]
#x = statistics.mean(data)

#print("Mean is :",x)
Beispiel #36
0
def answer(eq):  #利用eval算出表达式答案
    aws = fr(eval(eq)).limit_denominator(
        1000)  #eval()函数用来执行一个字符串表达式,并返回表达式的值,limit_denominator求近似值
    answer = str(aws)
    return (answer)
Beispiel #37
0
from puiseuxPoly import puiseux
from mypoly import mypoly
from expandParallel import solutionList
from fractions import Fraction as fr
import cPickle
if __name__=='__main__':
    p = mypoly({0:puiseux({5:1}),1:puiseux({fr(7,2):1}),2:puiseux({1:1}),3:puiseux({-1:1}),5:puiseux({fr(-1,2):1}),6:puiseux({fr(1,2):1}),7:puiseux({fr(10,3):1}),8:puiseux({fr(5,2):1})})
    p = mypoly({0:puiseux({0:(0.602188930612+0.991723585529j)}),4:puiseux({3:0.991343060948+0.811367139699j})})
    p = cPickle.load(open("failurePoly.p","rb"))
    n=4
    sols = solutionList(p,n,True)
    for sol in sols:
        expList = [p(sol.trunc(j)).order() for j in xrange(1,len(sol.internal))]
        print sol.trunc(1),'\r\t\t\t\t\t\t',[str(item) for item in expList]
Beispiel #38
0
def cfe(g):
    p, q, r, s = 0, 1, 1, 0
    for α, b in g:
        p, q, r, s = r, s, r * b + p * α, s * b + q * α
        yield fr(r, s)