Beispiel #1
0
def test_function(cam_url):
    # face_rec_graph = FaceGraph()
    # detector = MTCNNDetector(face_rec_graph)
    # estimator = HeadPoseEstimator(model_prefix='../models/cpt', ctx=mx.cpu())
    if args.cam_url is not None:
        frame_reader = URLFrameReader(args.cam_url, scale_factor=1)
    else:
        return -1
    while True:
        frame = frame_reader.next_frame()
        if frame is None:
            print('Frame is None...')
            time.sleep(5)
            continue
        # origin_bbs, points = detector.detect_face(frame)
        # for i, origin_bb in enumerate(origin_bbs):
        #     cropped_face = CropperUtils.crop_face(frame, origin_bb)
        #     yaw = FaceAngleUtils.calc_angle(points[:, i])
        #     pitch = FaceAngleUtils.calc_face_pitch(points[:, i])
        #     print(cropped_face.shape)
        #     # resize_face = np.resize(cropped_face,(64, 64, 3))
        #     frame = FaceAngleUtils.plot_points(frame, points[:, i])
        #     # print('pitch-yaw angle of test1: {}'.format(estimator.predict(resize_face)))
        #     print('pitch-yaw angle: {}, {}'.format(pitch, yaw))
        #  # print('pitch-yaw angle: {}'.format(estimator.crop_and_predict(frame, [points[:, i]])))
        cv2.imshow('img', frame)
        cv2.waitKey(1)
Beispiel #2
0
 def setUp(self):
     frame_reader = URLFrameReader('')
     self.frame_shape = (480, 720, 3)
     sample_frame = np.zeros(self.frame_shape)
     frame_reader.next_frame = mock.MagicMock(return_value=sample_frame)
     self.lock = threading.Lock()
     self.max_queue_size = 10
     self.max_frame_on_disk = 10
     self.frame_queue = FrameQueue(
         frame_reader,
         self.lock,
         max_queue_size=self.max_queue_size,
         max_frame_on_disk=self.max_frame_on_disk)
     self.frame_queue.start()
Beispiel #3
0
def generate_video_sample(cam_url, area):
    '''generating'''
    print('Generating... ')
    print("Cam URL: {}".format(cam_url))
    print("Area: {}".format(area))
    # Variables for tracking faces
    frame_counter = 0

    # Variables holding the correlation trackers and the name per faceid
    frame_sample = {}

    face_rec_graph = FaceGraph()
    face_extractor = FacenetExtractor(face_rec_graph)
    detector = MTCNNDetector(face_rec_graph)
    preprocessor = Preprocessor()
    if args.cam_url is not None:
        frame_reader = URLFrameReader(args.cam_url, scale_factor=1)
    else:
        frame_reader = RabbitFrameReader(rabbit_mq)

    try:
        while True:  # frame_reader.has_next():
            frame = frame_reader.next_frame()
            frame_sample[frame_counter] = FrameSample()
            frame_sample[frame_counter].read_image = frame
            if frame is None:
                print("Waiting for the new image")
                continue

            print("Frame ID: %d" % frame_counter)

            if frame_counter % Config.Frame.FRAME_INTERVAL == 0:
                origin_bbs, points = detector.detect_face(frame)
                frame_sample[frame_counter].origin_bbs = origin_bbs
                frame_sample[frame_counter].points = points
                for _, origin_bb in enumerate(origin_bbs):
                    cropped_face = CropperUtils.crop_face(frame, origin_bb)

                    # Calculate embedding
                    preprocessed_image = preprocessor.process(cropped_face)
                    emb_array, coeff = face_extractor.extract_features(
                        preprocessed_image)
                    frame_sample[frame_counter].embs.append(emb_array)

            frame_counter += 1
    except KeyboardInterrupt:
        print('Keyboard Interrupt !!! Release All !!!')
        print('Saved this video sample as ../session/db/sample.pkl')
        PickleUtils.save_pickle('../session/db/sample.pkl', frame_sample)
 def test_ip_type(self):
     frame_reader = URLFrameReader(
         cam_url=
         'rtsp://*****:*****@[email protected]:1024/onvif/profile2/media.smp'
     )
     self.assertEqual(frame_reader._URLFrameReader__url_type,
                      URLFrameReader.IP_STREAM)
Beispiel #5
0
def main(cam_url, recording_area):

    rb = RabbitMQ((Config.Rabbit.USERNAME, Config.Rabbit.PASSWORD),
                  (Config.Rabbit.IP_ADDRESS, Config.Rabbit.PORT))
    detector = MTCNNDetector(FaceGraph())
    frame_reader = URLFrameReader(cam_url)
    edit_image = utils.CropperUtils()
    face_angle = utils.FaceAngleUtils()
    feature_extractor = FacenetExtractor(FaceGraph())
    pre_process = Preprocessor(whitening)

    while frame_reader.has_next():

        embedding_images = []
        embedding_vectors = []
        display_images = []
        display_image_bounding_boxes = []

        frame = frame_reader.next_frame()
        bounding_boxes, points = detector.detect_face(frame)

        for index, bounding_box in enumerate(bounding_boxes):

            if face_angle.is_acceptable_angle(points[:, index]) is True:

                embedding_image = edit_image.crop_face(frame, bounding_box)
                embedding_images.append(embedding_image)

                display_image, display_image_bounding_box = edit_image.crop_display_face(
                    frame, bounding_box)
                display_images.append(display_image)
                display_image_bounding_boxes.append(display_image_bounding_box)

                whitened_image = pre_process.process(embedding_image)
                embedding_vector, coeff = feature_extractor.extract_features(
                    whitened_image)

                embedding_vectors.append(embedding_vector)

        if len(embedding_vectors) > 0:

            rb.send_multi_embedding_message(display_images, embedding_vectors,
                                            recording_area, time.time(),
                                            display_image_bounding_boxes,
                                            rb.SEND_QUEUE_WORKER)
        else:
            print("No Face Detected")
Beispiel #6
0
def occlusion_dection_video(video_path, detector):
    frame_reader = URLFrameReader(video_path, scale_factor=1)
    frames_per_state = 4
    state_correct = 0
    curent_frame = 0
    # Opening phase
    try:
        for i in range(frames_per_state):
            curent_frame += 1
            frame = frame_reader.next_frame()
            detected_result = detector.detect(frame)
            frame_label = process_result(detected_result)
            if frame_label == NO_OCCLUSION:
                state_correct += 1
            # fps = "{0}/{1}".format(curent_frame, frames_per_state)
            # put_text_on_image(frame, fps, BLUE, "top")
            # cv2.imshow('frame', frame)

        state_validation = True if state_correct >= 1 else False
        state_correct = 0
        curent_frame = 0

        # Realtime phase
        while frame_reader.has_next():
            result_board = 255 * np.ones((400, 400, 3))
            frame = frame_reader.next_frame()
            curent_frame += 1
            show_information(frame, curent_frame, frames_per_state,
                             state_validation)
            detected_result = detector.detect(frame)
            frame_label = process_result(detected_result)
            if frame_label == NO_OCCLUSION:
                state_correct += 1

            if curent_frame >= frames_per_state:
                state_validation = True if state_correct >= 1 else False
                curent_frame = 0
                state_correct = 0
            display_result_board(result_board, detected_result)
            cv2.imshow('frame', frame)
            cv2.imshow('result', result_board)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    finally:
        # cap.release()
        cv2.destroyAllWindows()
def rotate_video(original_path, by_landmark=False):
    restructured_path = original_path + "_restructured"
    create_if_not_exist(restructured_path)
    videos = [os.path.join(original_path, id) for id in os.listdir(original_path)\
            if not os.path.isdir(os.path.join(original_path,id))]

    for video in videos:
        frame_reader = URLFrameReader(video, scale_factor=1)
        video_name = video.split("/")[-1].split(".")[0]
        video_type = video.split("/")[-1].split(".")[1]
        is_rotate = False
        if by_landmark:
            while True:
                frame = frame_reader.next_frame()
                if frame is None:
                    break
                rects, landmarks = detector.detect_face(frame)
                if len(rects) > 0:

                    rotate_angel = FaceAngleUtils.calc_face_rotate_angle(
                        landmarks[:, 0])
                    print("Points: " + str(landmarks[:, 0]) +
                          ", rotate_angel: " + str(rotate_angel))
                    if rotate_angel > 30:
                        video_name += "_rotate"
                    break
        else:
            cmd = 'ffmpeg -i %s' % video

            p = subprocess.Popen(cmd.split(" "),
                                 stderr=subprocess.PIPE,
                                 close_fds=True)
            stdout, stderr = p.communicate()
            reo_rotation = re.compile(b'rotate\s+:\s(?P<rotation>.*)')
            match_rotation = reo_rotation.search(stderr)
            if (match_rotation is not None
                    and len(match_rotation.groups()) > 0):
                rotation = match_rotation.groups()[0]

                if int(rotation) > 0:
                    video_name += "_rotate_" + str(int(rotation))

        n_video_path = os.path.join(restructured_path,
                                    video_name + "." + video_type)
        copy(video, n_video_path)
        print(video_name)
 def test_end_of_video(self):
     frame_reader = URLFrameReader(
         cam_url='%s//data/video/test-vin.mp4' % ROOT)
     for i in range(76):
         self.assertTrue(frame_reader.has_next())
         frame_reader.next_frame()
     self.assertFalse(frame_reader.has_next())
def get_frames(frame_queue, frame_reader, re_source, cam_url, queue_reader,
               lock, is_on):
    stream_time = time.time()
    while True and is_on[0]:
        if len(frame_queue) > Config.FRAME_QUEUE_SIZE:
            lock.acquire()
            frame_queue.clear()
            lock.release()
        frame = frame_reader.next_frame()
        if frame is not None:
            lock.acquire()
            frame_queue.append(frame)
            lock.release()
            stream_time = time.time()
        else:
            if time.time() - stream_time > Config.STREAM_TIMEOUT:
                print('Trying to connect to stream again...')
                if cam_url is not None:
                    frame_reader = URLFrameReader(cam_url, scale_factor=1)
                elif queue_reader is not None:
                    frame_reader = RabbitFrameReader(rabbit_mq, queue_reader)
                else:
                    print('Empty Image Source')
                    return -1
Beispiel #10
0
def main_function(cam_url, image_url, queue_reader, area):
    '''
    This is main function
    '''
    print("Cam URL: {}".format(cam_url))
    print("Area: {}".format(area))
    # Variables for tracking faces
    frame_counter = 0

    # Variables holding the correlation trackers and the name per faceid
    list_of_trackers = TrackersList()

    clear_tracking_folder()

    # Model for human detection
    print('Load YOLO model ...')
    options = {
        "model": "./cfg/yolo.cfg",
        "load": "../models/yolo.weights",
        "threshold": 0.5
    }
    detector = TFNet(options)

    # Model for person re-id
    body_extractor = BodyExtractor()

    if image_url is not None:
        imgcv = cv2.imread(image_url)
        results = detector.return_predict(imgcv)
        print(results)
        imgcv = draw_results(imgcv, results)
        print('Result drawn as ../test-data/result.jpg')
        cv2.imwrite('../test-data/result.jpg', imgcv)

    track_results = TrackerResultsDict()
    predict_dict = {}
    if Config.CALC_FPS:
        start_time = time.time()
    if args.cam_url is not None:
        frame_reader = URLFrameReader(args.cam_url, scale_factor=1)
    elif queue_reader is not None:
        frame_reader = RabbitFrameReader(rabbit_mq, queue_reader)
    else:
        print('Empty Image Source')
        return -1

    video_out_fps, video_out_w, video_out_h, = frame_reader.get_info()
    print(video_out_fps, video_out_w, video_out_h)
    center = (int(video_out_w / 2), int(video_out_h / 2))
    bbox = [
        int(center[0] - Config.Frame.ROI_CROP[0] * video_out_w),
        int(center[1] - video_out_h * Config.Frame.ROI_CROP[1]),
        int(center[0] + Config.Frame.ROI_CROP[2] * video_out_w),
        int(center[1] + Config.Frame.ROI_CROP[3] * video_out_h)
    ]
    video_out = None

    if Config.Track.TRACKING_VIDEO_OUT:
        # new_w = abs(bbox[0] - bbox[2])
        # new_h = abs(bbox[1] - bbox[3])
        # print(new_w, new_h)
        video_out = VideoHandle('../data/tracking_video_out.avi',
                                video_out_fps, int(video_out_w),
                                int(video_out_h))
    dlib_c_tr_video = cv2.VideoWriter('../data/check_tracking_video.avi',
                                      cv2.VideoWriter_fourcc(*'XVID'),
                                      video_out_fps,
                                      (int(video_out_w), int(video_out_h)))

    try:
        while True:  # frame_reader.has_next():
            frame = frame_reader.next_frame()
            if frame is None:
                print("Waiting for the new image")
                trackers_return_dict, predict_trackers_dict = \
                    list_of_trackers.check_delete_trackers(None, rabbit_mq)
                track_results.update_two_dict(trackers_return_dict)
                predict_dict.update(predict_trackers_dict)
                # list_of_trackers.trackers_history.check_time(None)
                # if args.cam_url is not None:
                #     frame_reader = URLFrameReader(args.cam_url, scale_factor=1)
                # elif queue_reader is not None:
                #     frame_reader = RabbitFrameReader(rabbit_mq, queue_reader)
                # else:
                #     print('Empty Image Source')
                #     return -1

                continue

            print("Frame ID: %d" % frame_counter)

            # frame = frame[bbox[1]:bbox[3], bbox[0]:bbox[2], :]

            if Config.Track.TRACKING_VIDEO_OUT:
                video_out.tmp_video_out(frame)
            if Config.CALC_FPS:
                fps_counter = time.time()

            tmpi = list_of_trackers.update_dlib_trackers(frame)
            dlib_c_tr_video.write(tmpi)

            if frame_counter % Config.Frame.FRAME_INTERVAL == 0:
                start_time = time.time()
                detected_bbs = []
                results = detector.return_predict(frame)
                print('Detect time: {}'.format(1 / (time.time() - start_time)))
                for result in results:
                    if result['label'] != 'person':
                        continue
                    x1 = result['topleft']['x']
                    y1 = result['topleft']['y']
                    x2 = result['bottomright']['x']
                    y2 = result['bottomright']['y']

                    origin_bb = [x1, y1, x2, y2]
                    detected_bbs.append(origin_bb)

                    print(is_inner_bb(bbox, origin_bb))
                    if not is_inner_bb(bbox, origin_bb):
                        continue
                    if calc_bb_size(origin_bb) < 10000:
                        continue
                    bb_size = calc_bb_size(origin_bb)
                    body_image = frame[origin_bb[1]:origin_bb[3],
                                       origin_bb[0]:origin_bb[2], :]
                    # body_emb = body_extractor.extract_feature(body_image)

                    # TODO: refractor matching_detected_face_with_trackers
                    matched_fid = list_of_trackers.matching_face_with_trackers(
                        frame, frame_counter, origin_bb, None, body_image,
                        body_extractor)

                    # Update list_of_trackers
                    list_of_trackers.update_trackers_list(
                        matched_fid, time.time(), origin_bb, body_image,
                        bb_size, area, frame_counter, None, body_extractor,
                        rabbit_mq)

            # list_of_trackers.update_trackers_by_tracking(body_extractor,
            #                                              frame,
            #                                              area,
            #                                              frame_counter,
            #                                              detected_bbs,
            #                                              rabbit_mq)

            trackers_return_dict, predict_trackers_dict = \
                list_of_trackers.check_delete_trackers(None, rabbit_mq)
            track_results.update_two_dict(trackers_return_dict)
            predict_dict.update(predict_trackers_dict)

            # Check extract trackers history time (str(frame_counter) + '_' + str(i))
            # list_of_trackers.trackers_history.check_time(None)

            frame_counter += 1
            if Config.CALC_FPS:
                print("FPS: %f" % (1 / (time.time() - fps_counter)))
        if Config.Track.TRACKING_VIDEO_OUT:
            print('Write track video')
            video_out.write_track_video(track_results.tracker_results_dict)
        if Config.Track.PREDICT_DICT_OUT:
            PickleUtils.save_pickle(Config.PREDICTION_DICT_FILE, predict_dict)
    except KeyboardInterrupt:
        print('Keyboard Interrupt !!! Release All !!!')
        # list_of_trackers.trackers_history.check_time(matcher)
        if Config.CALC_FPS:
            print('Time elapsed: {}'.format(time.time() - start_time))
            print('Avg FPS: {}'.format(
                (frame_counter + 1) / (time.time() - start_time)))
        frame_reader.release()
        if Config.Track.TRACKING_VIDEO_OUT:
            print('Write track video')
            video_out.write_track_video(track_results.tracker_results_dict)
            video_out.release()
        if Config.Track.PREDICT_DICT_OUT:
            PickleUtils.save_pickle(Config.PREDICTION_DICT_FILE, predict_dict)
 def test_scale_factor(self):
     frame_reader = URLFrameReader(
         cam_url='%s//data/video/test-vin.mp4' % ROOT, scale_factor=2)
     frame = frame_reader.next_frame()
     self.assertEqual(frame.shape, (540, 960, 3))
Beispiel #12
0
#import glasses_mask
import mask_glasses

from cv_utils import CropperUtils
from frame_process import ROIFrameProcessor
import cv2
from preprocess import Preprocessor, normalization
import numpy as np
import click
from scipy import misc
from config import Config
from cv_utils import create_if_not_exist
import time
import pipe

frame_reader = URLFrameReader(0)
face_detector = MTCNNDetector(FaceGraph())
frame_processor = ROIFrameProcessor(scale_factor=2)

mask_classifier = mask_glasses.MaskClassifier()
glasses_classifier = mask_glasses.GlassesClassifier()

preprocessor = Preprocessor(algs=normalization)

MASK_DIR = '%s/data/Mask/' % Config.ROOT
NOMASK_DIR = '%s/data/No_Mask/' % Config.ROOT
GLASSES_DIR = '%s/data/Glasses/' % Config.ROOT
NOGLASSES_DIR = '%s/data/No_Glasses/' % Config.ROOT

create_if_not_exist(MASK_DIR)
create_if_not_exist(NOMASK_DIR)
Beispiel #13
0
def cam_worker_function(cam_url, area):
    '''
    Cam worker function
    '''
    print("Cam URL: {}".format(cam_url))
    print("Area: {}".format(area))

    # Modify Config
    Config.Track.TRACKING_QUEUE_CAM_TO_CENTRAL = True

    rabbit_mq = RabbitMQ((Config.Rabbit.USERNAME, Config.Rabbit.PASSWORD),
                         (Config.Rabbit.IP_ADDRESS, Config.Rabbit.PORT))

    frame_counter = 0

    # Variables holding the correlation trackers and the name per faceid
    list_of_trackers = TrackersList()

    face_rec_graph = FaceGraph()
    face_extractor = FacenetExtractor(face_rec_graph)
    detector = MTCNNDetector(face_rec_graph)
    preprocessor = Preprocessor()
    matcher = KdTreeMatcher()
    if Config.CALC_FPS:
        start_time = time.time()
    if args.cam_url is not None:
        frame_reader = URLFrameReader(args.cam_url, scale_factor=1.5)
    else:
        frame_reader = RabbitFrameReader(rabbit_mq)

    try:
        while True:  # frame_reader.has_next():
            frame = frame_reader.next_frame()
            if frame is None:
                print("Waiting for the new image")
                list_of_trackers.check_delete_trackers(matcher,
                                                       rabbit_mq,
                                                       history_mode=False)
                continue

            print("Frame ID: %d" % frame_counter)

            if Config.CALC_FPS:
                fps_counter = time.time()

            list_of_trackers.update_dlib_trackers(frame)

            if frame_counter % Config.Frame.FRAME_INTERVAL == 0:
                origin_bbs, points = detector.detect_face(frame)
                for i, origin_bb in enumerate(origin_bbs):
                    display_face, _ = CropperUtils.crop_display_face(
                        frame, origin_bb)
                    print("Display face shape")
                    print(display_face.shape)
                    if 0 in display_face.shape:
                        continue
                    cropped_face = CropperUtils.crop_face(frame, origin_bb)

                    # Calculate embedding
                    preprocessed_image = preprocessor.process(cropped_face)
                    emb_array, coeff = face_extractor.extract_features(
                        preprocessed_image)

                    # Calculate angle
                    angle = FaceAngleUtils.calc_angle(points[:, i])

                    # TODO: refractor matching_detected_face_with_trackers
                    matched_fid = list_of_trackers.matching_face_with_trackers(
                        frame, origin_bb, emb_array)

                    # Update list_of_trackers
                    list_of_trackers.update_trackers_list(
                        matched_fid, origin_bb, display_face, emb_array, angle,
                        area, frame_counter, matcher, rabbit_mq)

                    if Config.Track.TRACKING_QUEUE_CAM_TO_CENTRAL:
                        track_tuple = (matched_fid, display_face, emb_array,
                                       area, time.time(), origin_bb, angle)
                        rabbit_mq.send_tracking(
                            track_tuple,
                            rabbit_mq.RECEIVE_CAM_WORKER_TRACKING_QUEUE)

            # Check detete current trackers time
            list_of_trackers.check_delete_trackers(matcher,
                                                   rabbit_mq,
                                                   history_mode=False)

            frame_counter += 1
            if Config.CALC_FPS:
                print("FPS: %f" % (1 / (time.time() - fps_counter)))

    except KeyboardInterrupt:
        print('Keyboard Interrupt !!! Release All !!!')
        if Config.CALC_FPS:
            print('Time elapsed: {}'.format(time.time() - start_time))
            print('Avg FPS: {}'.format(
                (frame_counter + 1) / (time.time() - start_time)))
        frame_reader.release()
 def test_invalid_url_has_no_frame(self):
     frame_reader = URLFrameReader(cam_url='abc')
     self.assertFalse(frame_reader.has_next())
 def test_video_type(self):
     frame_reader = URLFrameReader(
         cam_url='%s//data/video/test-vin.mp4' % ROOT)
     self.assertEqual(frame_reader._URLFrameReader__url_type,
                      URLFrameReader.VIDEO_FILE)
Beispiel #16
0
def general_process(lock_id, detector, preprocessor, face_extractor,
                    blynk_locker):
    '''
    INPUT: lock_id
    '''
    # Get locker infomation
    # lock_id = 'query from mongo'
    locker_info = mongodb_lockersinfo.find({'lock_id': lock_id})[0]
    this_locker = mongodb_lockers.find({'lock_id': lock_id})[0]
    cam_url = locker_info['cam_url']
    status = this_locker['status']

    blynk_locker.processing(status)

    # init face info
    mongodb_faceinfo = mongodb_db[str(lock_id)]

    # Variables for tracking faces
    frame_counter = 0
    start_time = time.time()
    acceptable_spoofing = 0

    # Variables holding the correlation trackers and the name per faceid
    tracking_folder = os.path.join(Config.TRACKING_DIR, str(lock_id))
    create_if_not_exist(tracking_folder)
    tracking_dirs = glob.glob(tracking_folder + '/*')
    if tracking_dirs == []:
        number_of_existing_trackers = 0
    else:
        lof_int_trackid = [
            int(tracking_dir.split('/')[-1]) for tracking_dir in tracking_dirs
        ]
        number_of_existing_trackers = max(lof_int_trackid) + 1
    tracker_manager = TrackerManager(
        'LOCKID' + str(lock_id), current_id=number_of_existing_trackers)
    frame_reader = URLFrameReader(cam_url, scale_factor=1)
    matcher = FaissMatcher()

    if status == 'locked':
        embs = []
        labels = []
        cursors = mongodb_faceinfo.find({
            'face_id': this_locker['lock_face_id']
        })
        for cursor in cursors:
            embs.append(np.array(cursor['embedding']))
            labels.append(cursor['image_id'])
        nof_registered_image_ids = len(labels)
        matcher.fit(embs, labels)

    while True:
        # in case the jerk hits the button
        if time.time() - start_time > 4:
            with open('../data/locker_{}_log.txt'.format(lock_id), 'a') as f:
                f.write('[LOCKER {}] OUT OF TIME! \n\n'.format(lock_id))
            frame_reader.release()
            blynk_locker.stop_processing(status)
            return -1

        frame = frame_reader.next_frame()
        if frame is None:
            print('Invalid Video Source')
            break

        fps_counter = time.time()
        # cv2.imshow('Locker {}'.format(lock_id), frame)
        # cv2.waitKey(1)

        tracker_manager.update_trackers(frame)
        if frame_counter % Config.Frame.FRAME_INTERVAL == 0:
            origin_bbs, points = detector.detect_face(frame)

            for i, in_origin_bb in enumerate(origin_bbs):
                origin_bb = in_origin_bb[:-1]

                display_face, str_padded_bbox = CropperUtils.crop_display_face(
                    frame, origin_bb)
                cropped_face = CropperUtils.crop_face(frame, origin_bb)

                # is_spoofing = spoofing_detector.is_face_spoofing(cropped_face)
                # if is_spoofing:
                #     acceptable_spoofing += 1
                # with open('../data/spoofing_log.txt', 'a') as f:
                #     f.write('Spoofing Detected at Locker {}: {}\n'.format(lock_id, is_spoofing))
                # if acceptable_spoofing > 5:
                #     with open('../data/locker_{}_log.txt'.format(lock_id), 'a') as f:
                #         f.write(
                #             '[LOCKER {}] STOP PROCESSING. '
                #             'SPOOFING DETECTED!\n'.format(lock_id)
                #         )
                #     frame_reader.release()
                #     blynk_locker.stop_processing(status)
                #     return -1

                # Calculate embedding
                preprocessed_image = preprocessor.process(cropped_face)
                # preprocessed_image = align_preprocessor.process(frame, points[:,i], aligner, 160)
                emb_array, _ = face_extractor.extract_features(
                    preprocessed_image)

                face_info = FaceInfo(origin_bb.tolist(), emb_array,
                                     frame_counter, display_face,
                                     str_padded_bbox, points[:, i].tolist())

                is_good_face = handle_filters(points[:, i], coeff_extractor,
                                              face_info, preprocessed_image)

                face_info.is_good = is_good_face
                # TODO: refractor matching_detected_face_with_trackers
                matched_track_id = tracker_manager.track(face_info)

                if not face_info.is_good:
                    print('BAD FACE')
                    continue

                # Update tracker_manager
                tracker_manager.update(matched_track_id, frame, face_info)
                checking_tracker = None
                checking_tracker, top_predicted_face_ids, matching_result_dict = \
                    tracker_manager.check_and_recognize_tracker(
                        matcher,
                        matched_track_id,
                        mongodb_faceinfo,
                        None)
                # handle_results(checking_tracker, matching_result_dict)
                if checking_tracker is not None:
                    dumped_images = checking_tracker.dump_images(
                        mongodb_faceinfo,
                        add_new=True,
                        trackingfolder=tracking_folder)
                    checking_tracker.represent_image_id = dumped_images[0]
                    face_url = os.path.join(Config.SEND_RBMQ_HTTP, str(lock_id),
                                            str(checking_tracker.track_id),
                                            checking_tracker.represent_image_id)
                    face_url += '.jpg'
                    if status == 'available':
                        # Save locker, sign up the face
                        mongodb_lockers.remove({'lock_id': lock_id})
                        msg_dict = {
                            'lock_id': lock_id,
                            'status': 'locked',
                            'lock_face_url': face_url,
                            'lock_face_id': checking_tracker.face_id,
                            'lock_timestamp': time.time(),
                            'unlock_face_url': None,
                            'unlock_face_id': None,
                            'unlock_timestap': None
                        }
                        mongodb_lockers.insert_one(msg_dict)

                        # update logs
                        msg_dict.update({'log_timestamp': time.time()})
                        mongodb_logs.insert_one(msg_dict)
                        with open('../data/locker_{}_log.txt'.format(lock_id),
                                  'a') as f:
                            f.write(
                                '[LOCKER {}] REGISTERED FACE AS {}. LOCKED\n'.
                                format(lock_id, checking_tracker.face_id))
                        blynk_locker.stop_processing('locked')

                    elif status == 'locked':
                        # Release the locker, face verification
                        # update locker
                        msg_dict = mongodb_lockers.find(
                            {
                                'lock_id': lock_id
                            }, projection={"_id": False})[0]
                        msg_dict.update({
                            'unlock_face': face_url,
                            'unlock_timestamp': time.time()
                        })

                        if this_locker[
                                'lock_face_id'] == checking_tracker.face_id:
                            print('UNLOCK!')
                            blynk_locker.stop_processing('available')
                            mongodb_lockers.remove({'lock_id': lock_id})
                            mongodb_lockers.insert_one({
                                'lock_id': lock_id,
                                'status': 'available',
                                'lock_face_id': None,
                                'lock_face_url': None,
                                'lock_timestamp': None,
                                'unlock_face_id': None,
                                'unlock_face_url': None,
                                'unlock_timestap': None
                            })
                            with open(
                                    '../data/locker_{}_log.txt'.format(lock_id),
                                    'a') as f:
                                f.write(
                                    '[LOCKER {}] MATCHED WITH FACE ID {}. '
                                    'UNLOCKED. THIS LOCKER IS AVAILABLE NOW!\n'.
                                    format(lock_id, checking_tracker.face_id))

                        else:
                            print('NOT MATCH')
                            blynk_locker.stop_processing('locked')
                            with open(
                                    '../data/locker_{}_log.txt'.format(lock_id),
                                    'a') as f:
                                f.write('[LOCKER {}] NOT MATCH. '
                                        'PLEASE TRY AGAIN!\n'.format(lock_id))

                        # update logs
                        msg_dict.update({'log_timestamp': time.time()})
                        mongodb_logs.insert_one(msg_dict)
                    frame_reader.release()
                    return 1
            tracker_manager.find_and_process_end_track(mongodb_faceinfo)
            frame_counter += 1
            print("FPS: %f" % (1 / (time.time() - fps_counter)))
def generic_function(cam_url, area):
    '''
    This is main function
    '''
    print("Generic function")
    print("Cam URL: {}".format(cam_url))
    print("Area: {}".format(area))
    # Variables for tracking faces

    # Variables holding the correlation trackers and the name per faceid
    list_of_trackers = TrackersList()

    clear_tracking_folder()

    matcher = KdTreeMatcher()
    print("Load sample")
    frame_sample = PickleUtils.read_pickle('../session/db/sample.pkl')
    frame_counter = 0
    track_results = TrackerResultsDict()
    predict_dict = {}
    if Config.CALC_FPS:
        start_time = time.time()
    if args.cam_url is not None:
        frame_reader = URLFrameReader(args.cam_url, scale_factor=1)
    else:
        frame_reader = RabbitFrameReader(rabbit_mq)
    video_out = None
    video_out_fps = 24
    video_out_w = 1920
    video_out_h = 1080
    print(video_out_fps, video_out_w, video_out_h)
    center = (int(video_out_w / 2), int(video_out_h / 2))
    bbox = [
        int(center[0] - 0.35 * video_out_w),
        int(center[1] - video_out_h * 0.35),
        int(center[0] + 0.35 * video_out_w),
        int(center[1] + 0.35 * video_out_h)
    ]
    if Config.Track.TRACKING_VIDEO_OUT:
        video_out = VideoHandle('../data/tracking_video_out.avi', video_out_fps,
                                int(video_out_w), int(video_out_h))
    try:
        while True:  # frame_reader.has_next():
            frame = frame_sample[frame_counter].read_image
            if frame is None:
                print("Waiting for the new image")
                trackers_return_dict, predict_trackers_dict = \
                    list_of_trackers.check_delete_trackers(matcher, rabbit_mq)
                track_results.update_two_dict(trackers_return_dict)
                predict_dict.update(predict_trackers_dict)
                continue

            print("Frame ID: %d" % frame_counter)
            print('Num of ids in matcher: {}'.format(matcher._numofids))

            if Config.Track.TRACKING_VIDEO_OUT:
                video_out.tmp_video_out(frame)
            if Config.CALC_FPS:
                fps_counter = time.time()

            list_of_trackers.update_dlib_trackers(frame)

            if frame_counter % Config.Frame.FRAME_INTERVAL == 0:
                origin_bbs = frame_sample[frame_counter].origin_bbs
                points = frame_sample[frame_counter].points
                for i, origin_bb in enumerate(origin_bbs):
                    print(is_inner_bb(bbox, origin_bb))
                    if not is_inner_bb(bbox, origin_bb):
                        continue
                    display_face, _ = CropperUtils.crop_display_face(
                        frame, origin_bb)

                    # Calculate embedding
                    emb_array = frame_sample[frame_counter].embs[i]

                    # Calculate angle
                    angle = FaceAngleUtils.calc_angle(points[:, i])

                    # TODO: refractor matching_detected_face_with_trackers
                    matched_fid = list_of_trackers.matching_face_with_trackers(
                        frame, origin_bb, emb_array)

                    # Update list_of_trackers
                    list_of_trackers.update_trackers_list(
                        matched_fid, time.time(), origin_bb, display_face,
                        emb_array, angle, area, frame_counter, i, matcher,
                        rabbit_mq)

            trackers_return_dict, predict_trackers_dict = \
                list_of_trackers.check_delete_trackers(matcher, rabbit_mq)
            track_results.update_two_dict(trackers_return_dict)
            predict_dict.update(predict_trackers_dict)

            # Check extract trackers history time (str(frame_counter) + '_' + str(i))
            list_of_trackers.trackers_history.check_time()

            frame_counter += 1
            if Config.CALC_FPS:
                print("FPS: %f" % (1 / (time.time() - fps_counter)))
        if Config.Track.TRACKING_VIDEO_OUT:
            print('Write track video')
            video_out.write_track_video(track_results.tracker_results_dict)
        if Config.Track.PREDICT_DICT_OUT:
            PickleUtils.save_pickle(Config.PREDICTION_DICT_FILE, predict_dict)
    except KeyboardInterrupt:
        print('Keyboard Interrupt !!! Release All !!!')
        if Config.CALC_FPS:
            print('Time elapsed: {}'.format(time.time() - start_time))
            print('Avg FPS: {}'.format(
                (frame_counter + 1) / (time.time() - start_time)))
        frame_reader.release()
        if Config.Track.TRACKING_VIDEO_OUT:
            print('Write track video')
            video_out.write_track_video(track_results.tracker_results_dict)
            video_out.release()
        if Config.Track.PREDICT_DICT_OUT:
            PickleUtils.save_pickle(Config.PREDICTION_DICT_FILE, predict_dict)
def generic_function(cam_url, queue_reader, area, face_extractor_model,
                     re_source):
    '''
    This is main function
    '''
    print("Generic function")
    print("Cam URL: {}".format(cam_url))
    print("Area: {}".format(area))

    # TODO: init logger, modulize this?

    # Variables for tracking faces
    frame_counter = 0

    if Config.Matcher.CLEAR_SESSION:
        clear_session_folder()

    if Config.Mode.CALC_FPS:
        start_time = time.time()
    if cam_url is not None:
        frame_reader = URLFrameReader(cam_url)
    else:
        print('Empty Image Source')
        return -1

    video_out_fps, video_out_w, video_out_h, = frame_reader.get_info()
    print(video_out_fps, video_out_w, video_out_h)

    video_out = None
    if Config.Track.TRACKING_VIDEO_OUT:
        video_out = VideoHandle(time.time(), video_out_fps, int(video_out_w),
                                int(video_out_h))

    db = DashboardDatabase(use_image_id=True)
    rabbit_mq = RabbitMQ((Config.Rabbit.USERNAME, Config.Rabbit.PASSWORD),
                         (Config.Rabbit.IP_ADDRESS, Config.Rabbit.PORT))
    matcher = KdTreeMatcher()
    matcher.build(db)

    # find current track
    import glob
    tracking_dirs = glob.glob(Config.Dir.TRACKING_DIR + '/*')

    if tracking_dirs == []:
        number_of_existing_trackers = 0
    else:
        lof_int_trackid = [
            int(tracking_dir.split('/')[-1]) for tracking_dir in tracking_dirs
        ]
        number_of_existing_trackers = max(lof_int_trackid) + 1

    mode = 'video'  # video, live
    '''
    # Feature 1: Find Merge Split
    splitMerge = pipe.SplitMergeThread(database=db, rabbit_mq=rabbit_mq, matcher=matcher)
    splitMerge.daemon = True
    splitMerge.start()

    # Feature 2: Find similar
    findSimilarFaceThread = pipe.FindSimilarFaceThread(database=db, rabbit_mq=rabbit_mq)
    findSimilarFaceThread.daemon = True
    findSimilarFaceThread.start()
    '''

    # main program stage
    stageDetectFace = pipe.Stage(pipe.FaceDetectWorker, 1)
    stagePreprocess = pipe.Stage(pipe.PreprocessDetectedFaceWorker, 1)
    stageDistributor = pipe.Stage(pipe.FaceDistributorWorker, 1)
    stageExtract = pipe.Stage(pipe.FaceExtractWorker, 1)
    stageTrack = pipe.Stage(pipe.FullTrackTrackingWorker,
                            1,
                            area=area,
                            database=db,
                            matcher=matcher,
                            init_tracker_id=number_of_existing_trackers)
    stageResultToTCH = pipe.Stage(pipe.SendToDashboardWorker,
                                  1,
                                  database=db,
                                  rabbit_mq=rabbit_mq)
    stageStorage = pipe.Stage(pipe.DashboardStorageWorker, 1)
    stageDatabase = pipe.Stage(pipe.DashboardDatabaseWorker, 1, database=db)

    stageDetectFace.link(stagePreprocess)
    stagePreprocess.link(stageDistributor)
    stageDistributor.link(stageExtract)
    stageExtract.link(stageTrack)
    stageTrack.link(stageResultToTCH)
    stageTrack.link(stageStorage)
    stageTrack.link(stageDatabase)

    if Config.Track.TRACKING_VIDEO_OUT:
        stageVideoOut = pipe.Stage(pipe.VideoWriterWorker,
                                   1,
                                   database=db,
                                   video_out=video_out)
        stageTrack.link(stageVideoOut)

    pipeline = pipe.Pipeline(stageDetectFace)

    print('Begin')
    try:
        while frame_reader.has_next():
            #continue
            frame = frame_reader.next_frame()
            if frame is None:
                if mode == 'video':
                    print("Wait for executor to finish it jobs")
                    pipeline.put(None)
                    break
                if mode == 'live':
                    if re_source:
                        print('Trying to connect the stream again ...')
                        if cam_url is not None:
                            frame_reader = URLFrameReader(cam_url,
                                                          scale_factor=1,
                                                          should_crop=True)
                    continue

            print('Read frame', frame_counter, frame.shape)

            if frame_counter % Config.Frame.FRAME_INTERVAL == 0:
                # timer = Timer(frame_counter)
                task = pipe.Task(pipe.Task.Frame)
                task.package(frame=frame, frame_info=frame_counter)
                pipeline.put(task)
                # pipeline.put((frame, frame_counter, timer))

            frame_counter += 1

        print('Time elapsed: {}'.format(time.time() - start_time))
        print('Avg FPS: {}'.format(
            (frame_counter + 1) / (time.time() - start_time)))
        frame_reader.release()
        '''
        splitMerge.join()
        findSimilarFaceThread.join()
        '''

    except KeyboardInterrupt:
        if Config.Track.TRACKING_VIDEO_OUT:
            video_out.release_tmp()
        pipeline.put(None)
        print('Keyboard Interrupt !!! Release All !!!')
        print('Time elapsed: {}'.format(time.time() - start_time))
        print('Avg FPS: {}'.format(
            (frame_counter + 1) / (time.time() - start_time)))
        frame_reader.release()
        '''
from face_detector import MTCNNDetector
from face_extractor import FacenetExtractor
from tf_graph import FaceGraph
from cv_utils import show_frame, CropperUtils
from preprocess import Preprocessor
from matcher import KdTreeMatcher
from frame_reader import URLFrameReader
import time

matcher = KdTreeMatcher()
face_graph = FaceGraph()
face_detector = MTCNNDetector(face_graph)
feature_extractor = FacenetExtractor(face_graph)
preprocessor = Preprocessor()
frame_reader = URLFrameReader(cam_url=0, scale_factor=2)

while frame_reader.has_next():
    frame = frame_reader.next_frame()
    bouncing_boxes, landmarks = face_detector.detect_face(frame)
    nrof_faces = len(bouncing_boxes)
    start = time.time()
    for i in range(nrof_faces):
        cropped = CropperUtils.crop_face(frame, bouncing_boxes[i])
        display_face, padded_bb_str = CropperUtils.crop_display_face(
            frame, bouncing_boxes[i])
        reverse_face = CropperUtils.reverse_display_face(
            display_face, padded_bb_str)
        process_img = preprocessor.process(cropped)
        show_frame(reverse_face, 'Reverse')
        show_frame(cropped, 'Cropped')
        emb, coeff = feature_extractor.extract_features(process_img)
def generic_function(cam_url, queue_reader, area, re_source, use_frame_queue):
    global rabbit_mq
    '''
    This is main function
    '''
    print("Generic function")
    print("Cam URL: {}".format(cam_url))
    print("Area: {}".format(area))

    if Config.Matcher.CLEAR_SESSION:
        clear_session_folder()

    if Config.Mode.CALC_FPS:
        start_time = time.time()

    if cam_url is not None:
        frame_reader = URLFrameReader(cam_url,
                                      scale_factor=1,
                                      re_source=re_source)
    elif queue_reader is not None:
        frame_reader = RabbitFrameReader(rabbit_mq, queue_reader)
    else:
        print('Empty Image Source')
        return -1

    if use_frame_queue:
        frame_src = FrameQueue(frame_reader,
                               max_queue_size=Config.Frame.FRAME_QUEUE_SIZE)
        frame_src.start()
    else:
        frame_src = frame_reader

    video_out = None
    if Config.Track.TRACKING_VIDEO_OUT:
        video_out = VideoHandle(time.time(), video_out_fps, int(video_out_w),
                                int(video_out_h))

    # Variables for tracking faces
    frame_counter = 0
    # Variables holding the correlation trackers and the name per faceid
    tracking_dirs = os.listdir(Config.Dir.TRACKING_DIR)
    if tracking_dirs == []:
        current_tracker_id = 0
    else:
        list_of_trackid = [int(tracking_dir) for tracking_dir in tracking_dirs]
        current_tracker_id = max(list_of_trackid) + 1
    imageid_to_keyid = {}

    matcher = FaissMatcher()
    matcher.build(database,
                  imageid_to_keyid=imageid_to_keyid,
                  use_image_id=True)
    tracker_manager = TrackerManager(area,
                                     matcher,
                                     database.mongodb_faceinfo,
                                     imageid_to_keyid=imageid_to_keyid,
                                     current_id=current_tracker_id)

    try:
        while True:
            frame = frame_src.next_frame()
            if Config.Mode.CALC_FPS:
                fps_counter = time.time()
            if frame is None:
                print("Waiting for the new image")
                tracker_manager.update(rabbit_mq)
                time.sleep(1)
                continue

            # track by kcf
            tracker_manager.update_trackers(frame)
            tracker_manager.update(rabbit_mq)

            origin_bbs, points = TensorflowAdapter.detect_face(frame)
            if len(origin_bbs) > 0:
                origin_bbs = [origin_bb[:4] for origin_bb in origin_bbs]
                embeddings_array = [None] * len(origin_bbs)
                tracker_manager.process_new_detections(frame,
                                                       origin_bbs,
                                                       points,
                                                       embeddings_array,
                                                       frame_id=frame_counter)

            frame_counter += 1
            if Config.Mode.CALC_FPS:
                print("FPS: %f" % (1 / (time.time() - fps_counter)))

        #TODO: this line never run
        tracker_manager.update(rabbit_mq)

    except KeyboardInterrupt:
        if use_frame_queue:
            frame_src.stop()
        print('Keyboard Interrupt !!! Release All !!!')
        tracker_manager.update(rabbit_mq)

        frame_src.release()
        if Config.CALC_FPS:
            print('Time elapsed: {}'.format(time.time() - start_time))
            print('Avg FPS: {}'.format(
                (frame_counter + 1) / (time.time() - start_time)))
        if Config.Track.TRACKING_VIDEO_OUT:
            print('Write track video')
            video_out.write_track_video(track_results.tracker_results_dict)
            video_out.release()

    else:
        raise Exception('Error')
def generic_function(cam_url, queue_reader, area, face_extractor_model,
                     re_source, multi_thread):
    '''
    This is main function
    '''
    print("Generic function")
    print("Cam URL: {}".format(cam_url))
    print("Area: {}".format(area))

    # Variables for tracking faces
    frame_counter = 0

    # Variables holding the correlation trackers and the name per faceid
    tracking_dirs = glob.glob(Config.TRACKING_DIR + '/*')
    if tracking_dirs == []:
        number_of_existing_trackers = 0
    else:
        lof_int_trackid = [
            int(tracking_dir.split('/')[-1]) for tracking_dir in tracking_dirs
        ]
        number_of_existing_trackers = max(lof_int_trackid) + 1
    imageid_to_keyid = {}
    tracker_manager = TrackerManager(
        area,
        imageid_to_keyid=imageid_to_keyid,
        current_id=number_of_existing_trackers)

    if Config.Matcher.CLEAR_SESSION:
        clear_session_folder()

    global querying_top10_image_ids_queue
    # mongodb_faceinfo.remove({})
    # reg_dict = PickleUtils.read_pickle(Config.REG_IMAGE_FACE_DICT_FILE)
    # if reg_dict is not None:
    #     for fid in reg_dict:
    #         mongodb_faceinfo.insert_one({'image_id': fid, 'face_id': reg_dict[fid]})
    #     print('Saved regdict in mongodb as collection regdict')
    matcher = FaissMatcher()
    matcher.build(
        mongodb_faceinfo, imageid_to_keyid=imageid_to_keyid, use_image_id=True)
    svm_matcher = None
    if Config.Matcher.CLOSE_SET_SVM:
        svm_matcher = SVMMatcher()
        svm_matcher.build(mongodb_faceinfo)

    track_results = TrackerResultsDict()

    if Config.CALC_FPS:
        start_time = time.time()
    if cam_url is not None:
        frame_reader = URLFrameReader(cam_url, scale_factor=1)
    elif queue_reader is not None:
        frame_reader = RabbitFrameReader(rabbit_mq, queue_reader)
    elif args.anno_mode:
        frame_reader = URLFrameReader('./nothing.mp4', scale_factor=1)
    else:
        print('Empty Image Source')
        return -1
    if not args.anno_mode:
        video_out_fps, video_out_w, video_out_h, = frame_reader.get_info()
        print(video_out_fps, video_out_w, video_out_h)
        bbox = [
            int(Config.Frame.ROI_CROP[0] * video_out_w),
            int(Config.Frame.ROI_CROP[1] * video_out_h),
            int(Config.Frame.ROI_CROP[2] * video_out_w),
            int(Config.Frame.ROI_CROP[3] * video_out_h)
        ]
        # bbox = [0, 0, video_out_w, video_out_h]

    video_out = None
    if Config.Track.TRACKING_VIDEO_OUT:
        video_out = VideoHandle(time.time(), video_out_fps, int(video_out_w),
                                int(video_out_h))

    # Turn on querying top 10 from queue
    if Config.QUERY_TOP10_MODE:
        thread = threading.Thread(target=give_this_id_10_closest_ids)
        thread.daemon = True
        thread.start()

    frame_queue = []
    lock = threading.Lock()

    if multi_thread:
        is_on = [True]
        t = threading.Thread(target=(get_frames), args=(frame_queue, frame_reader, re_source, \
                                                        cam_url, queue_reader, lock, is_on, ))
        t.start()

    try:
        while True:
            ms_msg = rabbit_mq.receive_str(Config.Queues.MERGE)
            ms_flag = 'merge'
            if ms_msg is None:
                ms_msg = rabbit_mq.receive_str(Config.Queues.SPLIT)
                ms_flag = 'split'
            if ms_msg is not None:
                merge_anchor, merge_list = extract_info_from_json(ms_msg)
                while merge_list != []:
                    image_id1 = merge_list.pop()
                    split_merge_id(ms_flag, image_id1, merge_anchor, matcher,
                                   preprocessor, face_extractor,
                                   tracker_manager, mongodb_dashinfo,
                                   mongodb_faceinfo, mongodb_mslog)
                continue

            action_msg = rabbit_mq.receive_str(Config.Queues.ACTION)
            if action_msg is not None:
                return_dict = json.loads(action_msg)
                print('Receive: {}'.format(return_dict))
                if return_dict['actionType'] == 'getNearest':
                    lock.acquire()
                    querying_top10_image_ids_queue.append(return_dict['data'])
                    lock.release()
                    continue

            if args.anno_mode:
                print('Annotation Mode, waiting for new tasks ...')
                time.sleep(1)
                continue

            if multi_thread:
                if len(frame_queue) > 0:
                    lock.acquire()
                    frame = frame_queue.pop(0)
                    lock.release()
                else:
                    frame = None
            else:
                frame = frame_reader.next_frame()

            tracker_manager.update_trackers(frame)

            #do this before check_and_recognize tracker (sync local matcher vs mongodb)

            trackers_return_dict, recognized_results = update_recognition(
                self, matcher, svm_matcher, mongodb_faceinfo)
            for tracker, matching_result_dict in recognized_results:
                handle_results(tracker, matching_result_dict, imageid_to_keyid = imageid_to_keyid, \
                                                                                    dump=False)

            # trackers_return_dict = tracker_manager.find_and_process_end_track(mongodb_faceinfo)
            track_results.merge(trackers_return_dict)

            tracker_manager.long_term_history.check_time(
                matcher, mongodb_faceinfo)

            if frame is None:
                print("Waiting for the new image")
                # if Config.Track.RECOGNIZE_FULL_TRACK:
                #     overtime_track_ids = tracker_manager.find_overtime_current_trackers(
                #         time_last=Config.Track.CURRENT_EXTRACR_TIMER-5,
                #         find_unrecognized=True
                #     )

                #     for overtime_track_id in overtime_track_ids:
                #         checking_tracker, top_predicted_face_ids, matching_result_dict = \
                #             tracker_manager.check_and_recognize_tracker(
                #                 matcher,
                #                 overtime_track_id,
                #                 mongodb_faceinfo,
                #                 svm_matcher)
                #         handle_results(checking_tracker, matching_result_dict, imageid_to_keyid = imageid_to_keyid,\
                #                                                                                  dump=False)
                if re_source and not multi_thread:
                    print('Trying to connect the stream again ...')
                    if cam_url is not None:
                        frame_reader = URLFrameReader(cam_url, scale_factor=1)
                    elif queue_reader is not None:
                        frame_reader = RabbitFrameReader(
                            rabbit_mq, queue_reader)
                    else:
                        print('Empty Image Source')
                        return -1
                break

            print("Frame ID: %d" % frame_counter)
            if "_rotate" in video:
                # rotate cw
                rotation = int(video.split("_")[-1].split(".")[0])
                frame = rotate_image_90(frame, rotation)

            if Config.Track.TRACKING_VIDEO_OUT:
                video_out.tmp_video_out(frame)
            if Config.CALC_FPS:
                fps_counter = time.time()

            if frame_counter % Config.Frame.FRAME_INTERVAL == 0:
                # crop frame
                #frame = frame[bbox[1]:bbox[3], bbox[0]:bbox[2],:]
                origin_bbs, points = detector.detect_face(frame)
                if len(origin_bbs) > 0:
                    origin_bbs = [origin_bb[:4] for origin_bb in origin_bbs]
                    display_and_padded_faces = [
                        CropperUtils.crop_display_face(frame, origin_bb)
                        for origin_bb in origin_bbs
                    ]
                    #cropped_faces = [CropperUtils.crop_face(frame, origin_bb) for origin_bb in origin_bbs]
                    preprocessed_images = [
                        preprocessor.process(
                            CropperUtils.crop_face(frame, origin_bb))
                        for origin_bb in origin_bbs
                    ]
                    embeddings_array, _ = face_extractor.extract_features_all_at_once(
                        preprocessed_images)
                for i, origin_bb in enumerate(origin_bbs):

                    display_face, str_padded_bbox = display_and_padded_faces[i]
                    #cropped_face = CropperUtils.crop_face(frame, origin_bb)

                    # Calculate embedding
                    preprocessed_image = preprocessed_images[i]
                    # preprocessed_image = align_preprocessor.process(frame, points[:,i], aligner, 160)
                    emb_array = np.asarray([embeddings_array[i]])

                    face_info = FaceInfo(
                        #oigin_bb.tolist(),
                        #emb_array,
                        frame_counter,
                        origin_bb,
                        points[:, i]
                        #display_face,
                        #str_padded_bbox,
                        #points[:,i].tolist()
                    )

                    is_good_face = handle_filters(points[:, i], coeff_extractor,
                                                  face_info, preprocessed_image)

                    face_info.is_good = is_good_face
                    # TODO: refractor matching_detected_face_with_trackers
                    matched_track_id = tracker_manager.track(face_info)

                    if not face_info.is_good:
                        print('BAD FACE')
                        continue

                    # Update tracker_manager
                    tracker_manager.update(matched_track_id, frame, face_info)
                    checking_tracker = None
                    # if not Config.Track.RECOGNIZE_FULL_TRACK:
                    #     checking_tracker, top_predicted_face_ids, matching_result_dict = \
                    #         tracker_manager.check_and_recognize_tracker(
                    #             matcher,
                    #             matched_track_id,
                    #             mongodb_faceinfo,
                    #             svm_matcher)
                    #     handle_results(checking_tracker, matching_result_dict, imageid_to_keyid = imageid_to_keyid, \
                    #                                                                 dump=True)

            # if Config.Track.RECOGNIZE_FULL_TRACK:
            #     overtime_track_ids = tracker_manager.find_overtime_current_trackers(
            #         time_last=Config.Track.CURRENT_EXTRACR_TIMER-5,
            #         find_unrecognized=True
            #     )

            #     for overtime_track_id in overtime_track_ids:
            #         checking_tracker, top_predicted_face_ids, matching_result_dict = \
            #             tracker_manager.check_and_recognize_tracker(
            #                 matcher,
            #                 overtime_track_id,
            #                 mongodb_faceinfo,
            #                 svm_matcher)
            #         handle_results(checking_tracker, matching_result_dict, imageid_to_keyid = imageid_to_keyid, \
            #                                                                                             dump=False)

            frame_counter += 1
            if Config.CALC_FPS:
                print("FPS: %f" % (1 / (time.time() - fps_counter)))
        if Config.Track.TRACKING_VIDEO_OUT:
            print('Write track video')
            video_out.write_track_video(track_results.tracker_results_dict)
        Config.Track.CURRENT_EXTRACR_TIMER = 0
        trackers_return_dict = tracker_manager.find_and_process_end_track(
            mongodb_faceinfo)
        Config.Track.HISTORY_CHECK_TIMER = 0
        Config.Track.HISTORY_EXTRACT_TIMER = 0
        tracker_manager.long_term_history.check_time(matcher, mongodb_faceinfo)
    except KeyboardInterrupt:
        if multi_thread:
            is_on[0] = False
            t.join()
        print('Keyboard Interrupt !!! Release All !!!')
        Config.Track.CURRENT_EXTRACR_TIMER = 0
        trackers_return_dict = tracker_manager.find_and_process_end_track(
            mongodb_faceinfo)
        Config.Track.HISTORY_CHECK_TIMER = 0
        Config.Track.HISTORY_EXTRACT_TIMER = 0
        tracker_manager.long_term_history.check_time(matcher, mongodb_faceinfo)
        if Config.CALC_FPS:
            print('Time elapsed: {}'.format(time.time() - start_time))
            print('Avg FPS: {}'.format(
                (frame_counter + 1) / (time.time() - start_time)))
        frame_reader.release()
        if Config.Track.TRACKING_VIDEO_OUT:
            print('Write track video')
            video_out.write_track_video(track_results.tracker_results_dict)
            video_out.release()
 def test_webcam_type_2(self):
     frame_reader = URLFrameReader(cam_url='0')
     self.assertEqual(frame_reader._URLFrameReader__url_type,
                      URLFrameReader.WEBCAM)