Beispiel #1
0
 def __init__(self, embedding_matrix, vocab):
     """
     @param embedding_matrix: the embedding matrix
     @param vocab:  the vocabulary, which is a dict that maps from word to word index
     """
     # a matrix where each row is an embedding vector
     self._embedding_matrix = embedding_matrix
     # dictionary that maps from word to word index
     self._vocab = vocab
     self._indexer = TextIndexer(vocab)
Beispiel #2
0
	def load(self, model_dir):
		self._model_dir = model_dir
		self._paramsfile = os.path.join(self._model_dir, 'params.py')
		self._params = utils.load_param_file(self._paramsfile)
		self._num_before = utils.get_dict_value(self._params, "num_words_before")
		self._num_after = utils.get_dict_value(self._params, "num_words_after")
		ckpt = os.path.join(utils.get_dict_value(self._params,'output_location'),
												utils.get_dict_value(self._params, 'model_name') + '.ckpt')
		vocab_file = os.path.join(utils.get_dict_value(self._params, 'output_location'), 'vocab.pkl')
		self._e = Evaluator.load2(ckpt)
		self._i = TextIndexer.from_file(vocab_file)
		self._keywords = self._params['keywords']
		self._id_to_word = self._params['id_to_keyword']
Beispiel #3
0
	def load(self, model_dir):
		self._model_dir = model_dir
		self._paramsfile = os.path.join(self._model_dir, 'params.py')
		self._params = utils.load_param_file(self._paramsfile)
		self._num_before = utils.get_dict_value(self._params, "num_words_before")
		self._num_after = utils.get_dict_value(self._params, "num_words_after")
		ckpt = os.path.join(utils.get_dict_value(self._params,'output_location'),
												utils.get_dict_value(self._params, 'model_name') + '.ckpt')
		vocab_file = os.path.join(utils.get_dict_value(self._params, 'output_location'), 'vocab.pkl')
		self._e = Evaluator.load2(ckpt)
		self._i = TextIndexer.from_file(vocab_file)
		with open(os.path.join(
				utils.get_dict_value(self._params, 'output_location'),
				'keywords.pkl'), 'rb') as f:
			keywords = pickle.load(f)
		self._params['keywords'] = keywords
		self._keywords = self._params['keywords']
		self._keyword_map, self._keyword_list = gen_keywords(self._params)
Beispiel #4
0
import framework.subgraph.losses as losses
import framework.utils.common as utils
import data
from framework.trainer import Trainer, _default_train_iteration_done
from time import time
import pickle
import model
import os
import shutil
import copy
import numpy as np

param_file = 'params.py'
params = utils.load_param_file(param_file)
params['num_classes'] = len(params['keywords'])+1
indexer = TextIndexer.from_txt_file(utils.get_dict_value(params, 'vocab_file'), max_size=utils.get_dict_value(params,'max_vocab_size',-1))
indexer.add_token('<pad>')
indexer.add_token('unk')
output_indexer = copy.deepcopy(indexer)
output_indexer.add_token('<blank>')
os.makedirs(utils.get_dict_value(params,'output_location'), exist_ok=True)
indexer.save_vocab_as_pkl(os.path.join(utils.get_dict_value(params,'output_location'), 'vocab.pkl'))

files_to_copy = [param_file]
for file in files_to_copy:
	shutil.copyfile(file,os.path.join(utils.get_dict_value(params,'output_location'), file))

params['vocab_size'] = indexer.vocab_size()

if 'training_data_dir' in params:
	training_data = ClassifierData.get_training_data(base_dir=params['training_data_dir'], indexer=indexer, params=params,
Beispiel #5
0
from word_classifier.data import ClassifierData
import framework.subgraph.losses as losses
import framework.utils.common as utils
from framework.trainer import Trainer, _default_train_iteration_done
from time import time
import model
import os
import shutil

param_file = 'params.py'
params = utils.load_param_file(param_file)
if not utils.get_dict_value(params, 'ignore_negative_data', False):
    params['num_classes'] = len(params['keywords']) + 1
else:
    params['num_classes'] = len(params['keywords'])
indexer = TextIndexer.from_txt_file(utils.get_dict_value(params, 'vocab_file'))
indexer.add_token('<pad>')
indexer.add_token('unk')
os.makedirs(utils.get_dict_value(params, 'output_location'), exist_ok=True)
indexer.save_vocab_as_pkl(
    os.path.join(utils.get_dict_value(params, 'output_location'), 'vocab.pkl'))
shutil.copyfile(
    param_file,
    os.path.join(utils.get_dict_value(params, 'output_location'), param_file))

params['vocab_size'] = indexer.vocab_size()
training_data = ClassifierData.get_monolingual_training(
    base_dir=params['monolingual_dir'], indexer=indexer, params=params)


def on_checkpoint_saved(trainer, params, save_path):
Beispiel #6
0
def eval(params,
				 save_accuracy_file=True,
				 batch_size=5000,
				 num_batches=20,
				 topn=1,
				 verbose=True):
	num_before = utils.get_dict_value(params, "num_words_before")
	num_after = utils.get_dict_value(params, "num_words_after")
	ckpt = os.path.join(utils.get_dict_value(params,'output_location'),
											utils.get_dict_value(params, 'model_name') + '.ckpt')
	accuracy_file = os.path.join(utils.get_dict_value(params,'output_location'),
											'accuracy.txt')
	vocab_file = os.path.join(utils.get_dict_value(params, 'output_location'), 'vocab.pkl')
	keywords_file = os.path.join(utils.get_dict_value(params, 'output_location'), 'keywords.pkl')
	e = Evaluator.load2(ckpt)
	i = TextIndexer.from_file(vocab_file)
	#test_sentence = "<S> ___ quick brown fox jumped over the lazy dog"
	test_sentence = "<S> ___ is no way to know whether it will work"
	#test_sentence = "<S> ___ house is on fire"
#	test_sentence = "<S> ___ in your best interest to lie"
#	test_sentence = "<S> ___ yours and I cannot touch it"
	#test_sentence = "<S> I ate a ___ and an apple"
	#test_sentence = "<S> I have to take ___ life away"
#	test_sentence = "<S> ___ may and it is raining"
	#test_sentence = "<S> This will take ___ before it will actually work"
	#test_sentence = "<S> this is probably bigger ___ that"
#	test_sentence = "<S> ___ is no place like home"
	#test_sentence = "I have ___ of money"
	#test_sentence = "<S> I think I ___ have it"
	test_sentence = "<S> don 't forget to get orange , banana , and ___ ."
#	test_sentence = "<S> in the heat ___ the night"
#	test_sentence = "<S> in the river , ___ the boat"
#	test_sentence = "<S> nothing can be ___ from the truth"
#	test_sentence = "<S> the ___ knot will unwind"
#	test_sentence = "<S> if you keep playing, you will ___ ."
	test_sentence = "<s> I ate a ___ of oranges ."
#	test_sentence = "<s> I ate a ___ and oranges ."
#	test_sentence = "<s> I live in a ___ ."
#	test_sentence = "<s> I ate a ___ of oranges ."
	test_sentence = "<s> I ate a ___ and oranges ."
	test_sentence = "<s> I live in a ___ ."
	test_sentence = "<s> I have seen it on him , and can ___ to it ."
	test_sentence = "<s> the thieves ___ the library and got very little for their pains ."

	# input data
	with open('/mnt/work/NeuralRewriting/eval/small_eval_data.json') as f:
		data = json.load(f)
	with open(keywords_file, 'rb') as f:
		k = pickle.load(f)

	unk_list = []
	for q in data:
		query_word = q['query_word']
		orig_sent = q['orig_sent']
		options = q['options']
		orig_sent = orig_sent.replace(query_word, "___")
		orig_sent = "<s> " + orig_sent
		test_sentence = orig_sent.lower()
		split_sentence = list(split_sentence_for_eval(test_sentence.split(), ["___"], num_before, num_after))
#		print(split_sentence[0][0])
		_, sentence, _, _ = i.index_wordlist(split_sentence[0][0])
		bef = time()
		r = e.eval({'sentence': [sentence]}, {'sm_decision'})
		aft = time()
		sm = r[0][0]

		for o in options:
			synonym = o['synonym']
			if synonym not in k:
				score = -1000
				unk_list += [synonym]
			else:
				score = math.log(sm[k.index(synonym)])
			o['clmtV1'] = score
			print(score)

	# save output
	with open('/mnt/work/NeuralRewriting/eval/small_eval_data_out.json','w') as f:
		json.dump(data,f)
Beispiel #7
0
from framework.evaluator import Evaluator
import framework.utils.common as utils
from framework.trainer import Trainer
import framework.subgraph.losses as losses
import logging
import sys
import os
from framework.utils.data.text_indexer import TextIndexer
import tensorflow as tf
sentences = ['Jimenez reported from San Jose Costa Rica ; Associated Press',
             "We went to the store and I bought a banana",
						 "This is the cat that walked over the mat .",
						 "<pad> <pad> In this case I think the problem is"]
e = Evaluator.load2("outputv0.ckpt")
i = TextIndexer.from_file('vocab.pkl')

for sentence in sentences:
#	for j in range(5):
#		sentence = '<pad> ' + sentence + " <pad>"
	_,indexed,_,_ = i.index_wordlist(sentence.split())
	r = e.eval({'sentence': [indexed]}, {'sm_decision'})
	print(sentence)
	print(r)
Beispiel #8
0
MODEL_NAME = "v0"

params = {
    'num_words_before': 10,
    'num_words_after': 10,
    'embedding_size': 300,
    'vocab_size': 100000,
    'embedding_device': None,
    'batch_size': 128,
    'num_classes': 4,
    'keywords': ['a', 'an', 'the'],
    'mini_batches_between_checkpoint': 100,
    'monolingual_dir': '/mnt/work/1-billion-word-language-modeling-benchmark'
}

indexer = TextIndexer.from_txt_file(
    os.path.join(params['monolingual_dir'], '1b_word_vocab.txt'))
indexer.add_token('<pad>')
indexer.add_token('unk')
indexer.save_vocab_as_pkl('vocab.pkl')
params['vocab_size'] = indexer.vocab_size()
training_data = ClassifierData.get_monolingual_training(
    base_dir=params['monolingual_dir'], indexer=indexer, params=params)


#print(training_data.next_batch(10))
#exit(0)
#print(training_data.next_batch())
def on_checkpoint_saved(trainer, params, save_path):
    msg = 'saved checkpoint: ' + save_path
    print(msg)
Beispiel #9
0
from urllib.parse import urlparse
from http.server import BaseHTTPRequestHandler, HTTPServer
run_server = True


paramsfile = "params.py"
data_base_dir = ""
http_port = 8080
params = utils.load_param_file(paramsfile)

vocab_file = os.path.join(utils.get_dict_value(params,'output_location'), 'vocab.pkl')
ckpt = os.path.join(utils.get_dict_value(params,'output_location'),
										utils.get_dict_value(params, 'model_name') + '.ckpt')
print(ckpt)
e = Evaluator.load2(ckpt)
i = TextIndexer.from_file(vocab_file)

num_before = utils.get_dict_value(params, "num_words_before")
num_after = utils.get_dict_value(params, "num_words_after")
pad_tok = utils.get_dict_value(params, "pad_tok", '<pad>')


def split_sentence_for_eval(sentence, keywords, num_before, num_after):
	result = data.gen_data(sentence, keywords, num_before=num_before, num_after=num_after,
                          ignore_negative_data=True, add_redundant_keyword_data=False)
	return result

def merge_sentence(sentence, num_before, num_after, mid_word):
	before = sentence[:num_before]
	after = sentence[num_after:]
	rlist = (before + [mid_word] + after)
Beispiel #10
0
class WordEmbedding(object):
    """ Class to wrap up a word embedding
    """
    def __init__(self, embedding_matrix, vocab):
        """
        @param embedding_matrix: the embedding matrix
        @param vocab:  the vocabulary, which is a dict that maps from word to word index
        """
        # a matrix where each row is an embedding vector
        self._embedding_matrix = embedding_matrix
        # dictionary that maps from word to word index
        self._vocab = vocab
        self._indexer = TextIndexer(vocab)

    def debug_dump(self):
        print(self._embedding_matrix.shape)

    def get_indexer(self):
        """
        Get the indexer in this class
        @return:
        """
        return self._indexer

    def word_count(self):
        """
        @return:
         number of words in this embedding
        """
        return self._embedding_matrix.shape[0]

    def embedding_dimension_count(self):
        """
        @return:
         number of dimensions in the embedding space
        """
        return self._embedding_matrix.shape[1]

    def add_token(self, token, vector):
        """
        Add a token to the embedding by adding it to the vocab and matrix.
        Note that this is probably not optimal for numpy
        @param token: token to add
        @param vector: embedding vector for that token
        @return: None
        """
        if (not token in self._vocab):
            self._vocab[token] = self._embedding_matrix.shape[0]
            self._embedding_matrix = np.concatenate(
                (self._embedding_matrix, vector))

    @classmethod
    def from_embedding_dict(cls,
                            embedding_dict,
                            vocab,
                            unk_token=None,
                            pad_token=None):
        """
        Create this class from the embedding dict and vocab
        @param embedding_dict:  dictionary that maps word to embedding vector
        @param vocab: dictionary that maps words to word index
        @return:
         WordEmbedding object
        """
        if not (unk_token == None) and not (unk_token in embedding_dict):
            vocab[unk_token] = len(vocab)
            embedding_dict[unk_token] = np.zeros(len(
                list(embedding_dict.values())[0]),
                                                 dtype=np.float32)
        if not (pad_token == None) and not (pad_token in embedding_dict):
            vocab[pad_token] = len(vocab)
            embedding_dict[pad_token] = np.zeros(len(
                list(embedding_dict.values())[0]),
                                                 dtype=np.float32)
        embedding_matrix = np.empty(
            (len(embedding_dict), len(list(embedding_dict.values())[0])),
            dtype=np.float32)
        for word, vector in embedding_dict.items():
            if not word in vocab:
                print('word [%s] in embedding but not in vocab' % word)
                vocab[word] = len(vocab)
            embedding_matrix[vocab[word]] = vector
        return cls(embedding_matrix, vocab)

    @classmethod
    def load_vocab_file(cls, vocab_txt_file_name, embedding_dict):
        """
        Load the vocab from a txt file
        @param vocab_txt_file_name: the name of the text file containing the vocab.  This file is a space separated file
          that contains <vocab> <junk>
        @param embedding_dict: the embedding dictionary for sanity check.  words not in embedding_dict get discarded.
        @return:
        """
        index = 0
        vocab = {}
        with open(vocab_txt_file_name, 'rb') as vocab_txt_file:
            for line in vocab_txt_file:
                row = line.decode('utf8').strip().split(' ')
                word = row[0]
                count = row[1]
                if (word in embedding_dict):
                    vocab[word] = index
                    index = index + 1
        return vocab

    @classmethod
    def from_pkl_file(cls, embedding_pkl_file_name, show_progress=True):
        """
        Load vocab and embedding data from pkl file
        @param vectors_pkl_file_name: name of pkl file
        @return: WordEmbedding object
        """
        if show_progress:
            print("loading " + embedding_pkl_file_name)
        with open(embedding_pkl_file_name, 'rb') as embedding_pkl_file:
            embedding_matrix, vocab = pickle.load(embedding_pkl_file)
            embedding = WordEmbedding(embedding_matrix, vocab)
            return embedding

    @classmethod
    def from_txt_file(cls,
                      vectors_txt_file_name,
                      unk_token='unk',
                      pad_token='<pad>',
                      show_progress=True,
                      dimension=300):
        """
        Load embedding from txt file
        @param vectors_txt_file_name: txt file containing vectors
        @return: WordEmbedding object
        """
        vectors = {}
        vocab = {}
        word_index = 0
        with open(vectors_txt_file_name, 'rb') as vectors_txt_file:
            for i, line in enumerate(vectors_txt_file):
                if show_progress and (i % 100000 == 0):
                    print("%s rows loaded" % i)
                line = line.rstrip().lstrip()
                row = line.decode('utf8').split(' ')

                # probably header
                if len(row) < dimension:
                    print("SKIPPING ROW %s" % i)
                    continue

                word = row[0]
                del row[0]
                vector = np.asarray(row).astype(np.float32)
                if not (len(vector) == dimension):
                    print('Error loading this line: ')
                    print(line)
                    row = line.decode('utf8').split(' ')
                    print(row)
                    exit(0)
                vectors[word] = vector
                vocab[word] = word_index
                word_index += 1
        embedding = WordEmbedding.from_embedding_dict(vectors,
                                                      vocab,
                                                      unk_token=unk_token,
                                                      pad_token=pad_token)
        return embedding

    @classmethod
    def from_file(cls, filename):
        """
        Load embedding from file.  If file has .pkl, then use pickle.  If file has
        .txt, then use txt (load_txt_file)
        @param filename:  name of file
        @return:
        """
        if (filename.endswith('.pkl')):
            return cls.from_pkl_file(filename)
        elif (filename.endswith('.txt')):
            return cls.from_txt_file(filename)
        elif (filename.endswith('.bin')):
            return cls.from_bin_file(filename)
        else:
            logging.error('WordEmbedding.from_file: invalid filename "%s"' %
                          filename)

    def get_vocab(self):
        """
        get the vocab dict
        @return:
        vocab dict which maps from word to index
        """
        return self._vocab

    def get_word_list(self):
        """
        get the list of words
        @return: 
        """
        return list(self._vocab.keys())

    def save_as_pkl_file(self, filename):
        """
        Save embedding matrix and vocab to a pickle file
        @param filename: name of pickle file
        @return:
        None
        """
        with open(filename, 'wb') as file:
            pickle.dump([self._embedding_matrix, self._vocab],
                        file,
                        protocol=4)

    def lookup_index(self, index):
        """
        Look up a word in the embedding matrix by index
        @param index: index of the word
        @return: embedding vector
        """
        return self._embedding_matrix[index]

    def wordlist_to_index_vector(self,
                                 wordlist,
                                 unk_word='unk',
                                 pad_token='<pad>',
                                 min_len=0,
                                 max_len=0):
        """
        Convert a list of token/words to a list of corresponding indices based on indexer
        @param wordlist: list of words
        @param unk_word: what to use for unknown words
        @param pad_token: what to use for padding
        @param min_len: min len (pad if less)
        @param max_len: max len (truncate if more)
        @return:  list of indices
        """
        return self._indexer.index_wordlist(wordlist, unk_word, pad_token,
                                            min_len, max_len)

    def sentence_to_index_vector(self,
                                 sentence,
                                 unk_word='unk',
                                 pad_token='<pad>',
                                 min_len=0,
                                 max_len=0):
        return self._indexer.index_text(sentence, unk_word, pad_token, min_len,
                                        max_len)

    def embedding_matrix(self):
        return self._embedding_matrix

    def _compute_context_vector(self,
                                ref_word_v,
                                ref_word,
                                context_sentence,
                                skip_self=True):
        word_list = utils.tokenize_text(context_sentence)
        context_vector = []
        midpt = int(len(ref_word_v) / 2)
        ref_word_dynamic = ref_word_v[midpt:]
        for w in word_list:
            if skip_self and (w == ref_word):
                continue
            v = self.lookup_word(w)
            if not (v is None):
                #                if (v.max() > 10000000):
                #                    print(w)
                #                    print(v)
                static_v = v[:midpt]
                context_vector.append(np.dot(static_v, ref_word_dynamic))
        return context_vector

    def lookup_word(self,
                    word,
                    context_sentence=None,
                    context_skip_self=True,
                    context_use_static=True):
        """
        Look up a word/token in the embedding        @param word:  word to look up
        @return: embedding vector
        """
        if word in self._vocab:
            if context_sentence is None:
                return self._embedding_matrix[self._vocab[word]]
            else:
                original = self.lookup_word(word)
                midpt = int(len(original) / 2)
                if context_use_static:
                    return np.append(
                        original[:midpt],
                        self._compute_context_vector(
                            original,
                            word,
                            context_sentence,
                            skip_self=context_skip_self))
                else:
                    return self._compute_context_vector(
                        original,
                        word,
                        context_sentence,
                        skip_self=context_skip_self)
        else:
            return None

    def context_lookup_word(self, word, context, context_use_static=True):
        """
        this is a faster version of lookup_word for context
        @param word:  word to look up
        @param context: a list of vector of context words
        @return: embedding vector
        """
        if word in self._vocab:
            original = self.lookup_word(word)
            midpt = int(len(original) / 2)
            result = original[:midpt]
            context_vector = []
            for context_word_vector in context:
                context_vector.append(
                    np.dot(result, context_word_vector[midpt:]))
            if context_use_static:
                return np.append(result, context_vector)
            else:
                return context_vector
        else:
            return None

    def vector_similarity(self, v1, v2, method=0):
        try:
            if method == 0:
                result = cos_distance(v1, v2)
            elif method == 1:
                result = euclidean_distance(v1, v2)
            elif method == 2:
                result = np.dot(v1, v2)
        except:
            result = -1
        return result

    def context_similarity(self,
                           w1,
                           w2,
                           context,
                           method=0,
                           context_use_static=True,
                           bits_to_use=0):
        """
        This is a faster version of word_similary for context sensitive similarity.  The assumption is that
        the context words are already looked up.
        @param w1: 
        @param w2: 
        @param context: 
        @param method: 
        @return: 
        """
        v1 = self.context_lookup_word(w1,
                                      context,
                                      context_use_static=context_use_static)
        v2 = self.context_lookup_word(w2,
                                      context,
                                      context_use_static=context_use_static)
        midpt = int(len(v1) / 2)
        if bits_to_use == 1:
            v1 = v1[:midpt]
            v2 = v2[:midpt]
        if bits_to_use == 2:
            v1 = v1[midpt:]
            v2 = v2[midpt:]
        return self.vector_similarity(v1, v2, method)

    def word_similarity(self,
                        w1,
                        w2,
                        method=0,
                        context_sentence1=None,
                        context_sentence2=None,
                        context_skip_self=True,
                        verbose=False,
                        context_use_static=True,
                        bits_to_use=1):
        """
        word similarity
        @param w1:  
        @param w2: 
        @param method:
           0 = cosine
           1 = euclidean
           2 = context dependent
        @return: 
        """
        #        print('[%s,%s,%s]'%(w1,w2,context_sentence))
        result = 0
        v1 = self.lookup_word(w1,
                              context_sentence=context_sentence1,
                              context_skip_self=context_skip_self,
                              context_use_static=context_use_static)
        if v1 is None:
            if verbose:
                print('WARNING: word %s is not in embedding' %
                      w1.encode('utf-8'))
            return -1
#        if (v1.max()>10000000):
#            if verbose:
#                print(w1)
#                print(v1)
        v2 = self.lookup_word(w2,
                              context_sentence=context_sentence2,
                              context_skip_self=context_skip_self,
                              context_use_static=context_use_static)
        if v2 is None:
            if verbose:
                print('WARNING: word %s is not in embedding' %
                      w2.encode('utf-8'))
            return -1
#        if (v2.max()>10000000):
#            if verbose:
#                print(w2)
#                print(v2)
        midpt = int(len(v1) / 2)
        if bits_to_use == 1:
            v1 = v1[:midpt]
            v2 = v2[:midpt]
        if bits_to_use == 2:
            v1 = v1[midpt:]
            v2 = v2[midpt:]
        return self.vector_similarity(v1, v2, method)

    def get_most_similar(self,
                         word,
                         top_n=10,
                         method=0,
                         verbose=True,
                         context_sentence=None):
        """
        :param word: 
        :param top_n: 
        :param method: 
        :return: 
        """
        distances = []
        if verbose:
            num_words = len(self._vocab)
            dmark = num_words / 10
            mark = dmark
            print('looking through %s words' % num_words)

        if context_sentence is not None:
            context = []
            word_list = utils.tokenize_text(context_sentence)
            for context_word in word_list:
                if not (context_word == word):
                    context.append(self.lookup_word(context_word))

        for i, word2 in enumerate(self._vocab.keys()):
            if context_sentence is not None:
                distances.append({
                    'word':
                    word2,
                    'distance':
                    self.context_similarity(word,
                                            word2,
                                            context,
                                            method=method)
                })
            else:
                distances.append({
                    'word':
                    word2,
                    'distance':
                    self.word_similarity(word, word2, method=method)
                })
            if verbose:
                if i > mark:
                    print("%s percent complete" %
                          str(math.floor((float(i) / num_words) * 1000) / 10))
                    mark += dmark

        if not top_n == 0:
            distances = heapq.nlargest(top_n,
                                       distances,
                                       key=lambda s: s['distance'])
        return distances

    def get_wordvec_dict(self):
        result = {}
        for word, idx in self._vocab.items():
            result[word] = self._embedding_matrix[idx]
        return result

    def tf_embedding_lookup(self,
                            ids,
                            partition_strategy='mod',
                            name=None,
                            validate_indices=True):
        return tf.nn.embedding_lookup(self._embedding_matrix, ids,
                                      partition_strategy, name,
                                      validate_indices)

    def tf_embedding_lookup_from_wordlist(self,
                                          wordlist,
                                          unk_word='unk',
                                          partition_strategy='mod',
                                          name=None,
                                          validate_indices=True):
        return tf.nn.embedding_lookup(
            self._embedding_matrix,
            self.wordlist_to_index_vector(wordlist, unk_word),
            partition_strategy, name, validate_indices)

    def tf_embedding_lookup_from_sentence(self,
                                          sentence,
                                          unk_word='unk',
                                          partition_strategy='mod',
                                          name=None,
                                          validate_indices=True):
        return tf.nn.embedding_lookup(
            self._embedding_matrix,
            self.sentence_to_index_vector(sentence, unk_word),
            partition_strategy, name, validate_indices)

    def tf_embedding_variable(self, name="word_embedding", trainable=False):
        return tf.get_variable(name,
                               initializer=self._embedding_matrix,
                               trainable=trainable,
                               dtype=tf.float32)
Beispiel #11
0
def eval(params,
				 save_accuracy_file=True,
				 batch_size=5000,
				 num_batches=20,
				 topn=1,
				 verbose=True):
	num_before = utils.get_dict_value(params, "num_words_before")
	num_after = utils.get_dict_value(params, "num_words_after")
	ckpt = os.path.join(utils.get_dict_value(params,'output_location'),
											utils.get_dict_value(params, 'model_name') + '.ckpt')
	accuracy_file = os.path.join(utils.get_dict_value(params,'output_location'),
											'accuracy.txt')
	keywords = params['keywords']
	rkeywords = params['id_to_keyword']
	vocab_file = os.path.join(utils.get_dict_value(params, 'output_location'), 'vocab.pkl')
	e = Evaluator.load2(ckpt)
	i = TextIndexer.from_file(vocab_file)
	e.dump_variable_sizes()
	exit(0)
	test_sentence = "it is better to die happy then to live miserably"
#	test_sentence = "there going two make a turkey today"
#	test_sentence = "they 're going two make a turkey today"
	test_sentence = "to big to fail my ass !"
#	test_sentence = "two big is not bad"
#	test_sentence = "<S> two big fishes in the same bucket"
#	test_sentence = "<S> there are two fishes in the same bucket ."
#	test_sentence = "<S> there are too fishes in the same bucket ."
	#test_sentence = "<S> I had two fishes for dinner"
	test_sentence = "<S> its raining men . hallelujah !"
#	test_sentence = "it 's head is too big"
	#test_sentence = "if it 's not one than it 's true"
	#test_sentence = "i would except it , but i don 't think it 's true"

	print("HELLO")
	print(keywords)
	split_sentence = list(split_sentence_for_eval(test_sentence.split(), keywords, num_before, num_after))
	print(split_sentence)
	for j in range(len(split_sentence)):
		print(split_sentence[j][0])
		_, sentence, _, _ = i.index_wordlist(split_sentence[j][0])
		bef = time()
		r = e.eval({'sentence': [sentence]}, {'sm_decision'})
		aft = time()
		#print(r[0][0])
		sm = r[0][0]
		am = np.argmax(sm)
		#print(am)
		k = rkeywords
		if am == 0:
			print("DO NOTHING")
		else:
			print(k[am - 1])
		k = [''] + k
		sm, k = zip(*sorted(zip(sm, k), reverse=True))
	#	print(k)
		for q,(x,y) in enumerate(zip(sm,k)):
			if q > 10:
				break
			print("%0.4f %s" %(x,y))
		print(test_sentence)
		print("EVAL TIME = %s"%(aft-bef))