Beispiel #1
0
def test_fri():
    # Pure FRI tests
    poly = list(range(4096))
    root_of_unity = pow(7, (modulus - 1) // 16384, modulus)
    evaluations = fft(poly, modulus, root_of_unity)
    proof = prove_low_degree(evaluations, root_of_unity, 4096, modulus)
    print("Approx proof length: %d" % bin_length(compress_fri(proof)))
    assert verify_low_degree_proof(
        merkelize(evaluations)[1], root_of_unity, proof, 4096, modulus)

    try:
        fakedata = [
            x if pow(3, i, 4096) > 400 else 39
            for x, i in enumerate(evaluations)
        ]
        proof2 = prove_low_degree(fakedata, root_of_unity, 4096, modulus)
        assert verify_low_degree_proof(
            merkelize(fakedata)[1], root_of_unity, proof, 4096, modulus)
        raise Exception("Fake data passed FRI")
    except:
        pass
    try:
        assert verify_low_degree_proof(
            merkelize(evaluations)[1], root_of_unity, proof, 2048, modulus)
        raise Exception("Fake data passed FRI")
    except:
        pass
Beispiel #2
0
def verify_mimc_proof(inp, steps, round_constants, output, proof):
    p_root, d_root, b_root, l_root, branches, fri_proof = proof
    start_time = time.time()
    assert steps <= 2**32 // extension_factor
    assert is_a_power_of_2(steps) and is_a_power_of_2(len(round_constants))
    assert len(round_constants) < steps

    precision = steps * extension_factor

    # Get (steps)th root of unity
    G2 = f.exp(7, (modulus-1)//precision)
    skips = precision // steps

    # Gets the polynomial representing the round constants
    skips2 = steps // len(round_constants)
    constants_mini_polynomial = fft(round_constants, modulus, f.exp(G2, extension_factor * skips2), inv=True)

    # Verifies the low-degree proofs
    assert verify_low_degree_proof(l_root, G2, fri_proof, steps * 2, modulus, exclude_multiples_of=extension_factor)

    # Performs the spot checks
    k1 = int.from_bytes(blake(p_root + d_root + b_root + b'\x01'), 'big')
    k2 = int.from_bytes(blake(p_root + d_root + b_root + b'\x02'), 'big')
    k3 = int.from_bytes(blake(p_root + d_root + b_root + b'\x03'), 'big')
    k4 = int.from_bytes(blake(p_root + d_root + b_root + b'\x04'), 'big')
    samples = spot_check_security_factor
    positions = get_pseudorandom_indices(l_root, precision, samples,
                                         exclude_multiples_of=extension_factor)
    last_step_position = f.exp(G2, (steps - 1) * skips)
    for i, pos in enumerate(positions):
        x = f.exp(G2, pos)
        x_to_the_steps = f.exp(x, steps)
        p_of_x = verify_branch(p_root, pos, branches[i*5])
        p_of_g1x = verify_branch(p_root, (pos+skips)%precision, branches[i*5 + 1])
        d_of_x = verify_branch(d_root, pos, branches[i*5 + 2])
        b_of_x = verify_branch(b_root, pos, branches[i*5 + 3])
        l_of_x = verify_branch(l_root, pos, branches[i*5 + 4])

        zvalue = f.div(f.exp(x, steps) - 1,
                       x - last_step_position)
        k_of_x = f.eval_poly_at(constants_mini_polynomial, f.exp(x, skips2))

        # Check transition constraints C(P(x)) = Z(x) * D(x)
        assert (p_of_g1x - p_of_x ** 3 - k_of_x - zvalue * d_of_x) % modulus == 0

        # Check boundary constraints B(x) * Q(x) + I(x) = P(x)
        interpolant = f.lagrange_interp_2([1, last_step_position], [inp, output])
        zeropoly2 = f.mul_polys([-1, 1], [-last_step_position, 1])
        assert (p_of_x - b_of_x * f.eval_poly_at(zeropoly2, x) -
                f.eval_poly_at(interpolant, x)) % modulus == 0

        # Check correctness of the linear combination
        assert (l_of_x - d_of_x - 
                k1 * p_of_x - k2 * p_of_x * x_to_the_steps -
                k3 * b_of_x - k4 * b_of_x * x_to_the_steps) % modulus == 0

    print('Verified %d consistency checks' % spot_check_security_factor)
    print('Verified STARK in %.4f sec' % (time.time() - start_time))
    return True