Beispiel #1
0
    def time_dependent(t_rad, t_kin, nc_h):
        # set the initial abundances for t = 0

        n_levels = len(species_data.energy_levels.data)

        #initial_fractional_abundances_wrathmall = numpy.ones(n_levels_wrathmall) \
        #                                      / n_levels_wrathmall

        initial_fractional_abundances = numpy.random.rand(n_levels)

        #initial_fractional_abundances[0] = 0.8
        #initial_fractional_abundances[1] = 1.e-3

        initial_fractional_abundances = \
            initial_fractional_abundances/initial_fractional_abundances.sum()

        y_0 = initial_fractional_abundances

        solver = ode(ode_rhs, jac=jac).set_integrator(
            'lsoda',
            #method='bdf',
            with_jacobian=True,
            rtol=1e-14,
            atol=1e-14)

        solver.set_initial_value(y_0, t_0)

        step_counter = 0
        t_all = []
        x_all = []
        while solver.t < t_f:

            solver.integrate(solver.t + dt)

            t_all.append(solver.t)
            x_all.append(solver.y)
            rel_diff = None
            if len(x_all) >= 2:
                y_2 = x_all[-2]
                y_1 = x_all[-1]
                rel_diff = numpy.abs((y_2 - y_1) / y_1)
                if (rel_diff < 1e-8).all():
                    break

            if step_counter % 100 == 0:
                print('{} t={:e} 1-x.sum()={:e}'.format(
                    step_counter, solver.t, 1.0 - solver.y.sum()))
                if rel_diff is not None:
                    print(
                        numpy.where((rel_diff < 1e-6).all())[0].size,
                        rel_diff.mean())
            step_counter += 1

        t_all, x_all = numpy.array(t_all), numpy.vstack(x_all)

        pop_dens_eq = population_density_at_steady_state(
            species_data, t_kin, t_rad, nc_h)

        return t_all, x_all, pop_dens_eq
Beispiel #2
0
def test_that_two_level_analytic_pop_dens_ratios_are_computed_correctly():

    #
    # load the two level species data
    #
    species_data = DataLoader().load('two_level_1')

    n_c = 1e6 * u.meter ** -3
    t_rad = 1000.0 * u.Kelvin

    #
    # for each value in the temperature range
    #  - compute the population density ration numerically
    #  - compute the population density analytically
    #
    # plot the comaprision
    #
    ratio_numeric_vs_t_kin = []
    ratio_analytic_vs_t_kin = []
    t_kin_range = numpy.logspace(1.0, 10.0, 50) * u.Kelvin
    for t_kin in t_kin_range:

        pop_dens_eq_numeric = population_density_at_steady_state(
            species_data,
            t_kin,
            t_rad,
            n_c)
        pop_dens_eq_ratio_numeric = pop_dens_eq_numeric[1] / pop_dens_eq_numeric[0]
        ratio_numeric_vs_t_kin.append(pop_dens_eq_ratio_numeric)

        pop_dens_eq_ratio_analytic = analytic.population_density_ratio_two_level(
            species_data.energy_levels.data['g'],
            species_data.energy_levels.data['E'],
            species_data.k_dex_matrix_interpolator(t_kin)[1, 0],
            species_data.a_matrix[1, 0],
            n_c,
            t_kin,
            t_rad
        )
        ratio_analytic_vs_t_kin.append(pop_dens_eq_ratio_analytic)
        print(t_kin)

    ratio_numeric_vs_t_kin = numpy.array(ratio_numeric_vs_t_kin).flatten()
    ratio_analytic_vs_t_kin = numpy.array(ratio_analytic_vs_t_kin).flatten()

    relative_error = numpy.abs(
        1.0 - numpy.array(ratio_numeric_vs_t_kin) / numpy.array(
            ratio_analytic_vs_t_kin)
    )

    assert relative_error.max() < 1.2e-15
    assert relative_error.std() < 5.0e-16
for nc_index, nc_h in enumerate(nc_h_rng):

    lambda_vs_t_kin = []
    lambda_vs_t_kin_wrathmall = []
    pop_dens_vs_t_kin = []

    for i, t_kin in enumerate(t_rng):
        print(t_kin, nc_h)

        lambda_vs_t_kin += [
            cooling_rate_at_steady_state(species_data, t_kin, t_rad, nc_h)
        ]

        pop_dens_vs_t_kin += [
            population_density_at_steady_state(species_data, t_kin, t_rad,
                                               nc_h)
        ]

        lambda_vs_t_kin_wrathmall += [
            cooling_rate_at_steady_state(species_data_wrathmall, t_kin, t_rad,
                                         nc_h)
        ]
        print(t_kin, pop_dens_vs_t_kin[i][0], pop_dens_vs_t_kin[i][2],
              pop_dens_vs_t_kin[i][4], pop_dens_vs_t_kin[i][6],
              pop_dens_vs_t_kin[i][8], pop_dens_vs_t_kin[i][10],
              pop_dens_vs_t_kin[i][12], pop_dens_vs_t_kin[i][14],
              pop_dens_vs_t_kin[i][16], pop_dens_vs_t_kin[i][1],
              pop_dens_vs_t_kin[i][3], pop_dens_vs_t_kin[i][5],
              pop_dens_vs_t_kin[i][7], pop_dens_vs_t_kin[i][9],
              pop_dens_vs_t_kin[i][11], pop_dens_vs_t_kin[i][13],
              pop_dens_vs_t_kin[i][15], pop_dens_vs_t_kin[i][17])
Beispiel #4
0
#
# for each value in the temperature range
#  - compute the population density ration numerically
#  - compute the population density analytically
#
# plot the comaprision
#
ratio_numeric_vs_t_kin = []
ratio_analytic_vs_t_kin = []
t_kin_range = numpy.logspace(1.0, 10.0, 50) * u.Kelvin
for t_kin in t_kin_range:

    # population densities using matrix inversion
    pop_dens_eq_numeric = population_density_at_steady_state(
        species_data,
        t_kin,
        t_rad,
        n_c
    )
    pop_dens_eq_ratio_numeric = pop_dens_eq_numeric[1] / pop_dens_eq_numeric[0]
    ratio_numeric_vs_t_kin.append(pop_dens_eq_ratio_numeric)

    # popultation densities using analytic expressions
    pop_dens_eq_ratio_analytic = analytic.population_density_ratio_two_level(
        species_data.energy_levels.data['g'],
        species_data.energy_levels.data['E'],
        species_data.k_dex_matrix_interpolator(t_kin)[1, 0],
        species_data.a_matrix[1, 0],
        n_c,
        t_kin,
        t_rad
    )
Beispiel #5
0
# the kinetic temperature of the gas
t_kin = 3000.0 * u.Kelvin
t_rad = 30.0 * u.Kelvin

species_data = DataLoader().load('two_level_1')

t_kin_range = logspace(2.0, 6.0, 100) * u.K

x_exact = array([
    population_denisty_ratio_two_level_no_radiation(species_data, T_kin, nc)
    for T_kin in t_kin_range
], 'f8')

x_numerical = array([
    population_density_at_steady_state(species_data, T_kin, 0.0, nc)
    for T_kin in t_kin_range
], 'f8')[:, :, 0]

# plot the relative population densities as a function of temperatures
pylab.figure()
pylab.loglog(t_kin_range, x_exact[:, 0], 'r-', label='x_0 exact')
pylab.loglog(t_kin_range, x_numerical[:, 0], 'ro', label='x_0 numerical')
pylab.loglog(t_kin_range, x_exact[:, 1], 'b-', label='x_1 exact')
pylab.loglog(t_kin_range, x_numerical[:, 1], 'bo', label='x_1 numerical')
pylab.legend()
pylab.title('fractional population densities of levels 0 and level 1')
pylab.show()

rel_errors = fabs(1.0 - x_numerical / x_exact)