Beispiel #1
0
from frustum_pointnet import FrustumPointNet

import torch
import torch.utils.data
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F

import numpy as np
import pickle

batch_size = 32
root_dir = "/home/songanz/Documents/Git_repo/fusion/"  # change this for your own usage

network = FrustumPointNet("Frustum-PointNet_eval_test_seq",
                          project_dir=root_dir)
network.load_state_dict(
    torch.load(root_dir + "pretrained_models/model_37_2_epoch_400.pth"))
network = network.cuda()

network.eval()  # (set in evaluation mode, this affects BatchNorm and dropout)

NH = network.BboxNet_network.NH

for sequence in [
        "0000", "0001", "0002", "0003", "0004", "0005", "0006", "0007", "0008",
        "0009", "0010", "0011", "0012", "0013", "0014", "0015", "0016", "0017",
        "0018", "0027"
]:
    print(sequence)
Beispiel #2
0
fps_frames_total = []

# Get calibration
calib = calibread(calib_path)
P2 = calib["P2"]
Tr_velo_to_cam_orig = calib[
    "Tr_velo_to_cam"]  # Rigid transformation from Velodyne to (non-rectified) camera coordinates
R0_rect_orig = calib["R0_rect"]

R0_rect = np.eye(4)
R0_rect[0:3, 0:3] = R0_rect_orig

Tr_velo_to_cam = np.eye(4)
Tr_velo_to_cam[0:3, :] = Tr_velo_to_cam_orig
'''''' '''''' '''''' ''' Load Networks ''' '''''' '''''' ''''''
F_network = FrustumPointNet("Frustum-PointNet_eval_val_seq",
                            project_dir=root_dir)
F_network.load_state_dict(torch.load(F_weights))
F_network = F_network.cuda()
NH = F_network.BboxNet_network.NH

Y_network = Darknet(Y_cfgfile)
Y_network.load_weights(Y_weights)
Y_network.cuda()

F_network.eval(
)  # (set in evaluation mode, this affects BatchNorm, dropout etc.)
Y_network.eval()
'''''' '''''' '''''' ''' Useful functions ''' '''''' '''''' ''''''


def resize_img(img, img_size=416):
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F

import numpy as np
import pickle
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt

sequence = "0004"

batch_size = 32

network = FrustumPointNet("Frustum-PointNet_eval_val_seq", project_dir="/home/vrushabhdesai07/3DOD_thesis")
network.load_state_dict(torch.load("/home/vrushabhdesai07/3DOD_thesis/pretrained_models/model_37_2_epoch_400.pth"))
network = network.cuda()

NH = network.BboxNet_network.NH

val_dataset = EvalSequenceDatasetFrustumPointNet(kitti_data_path="/home/vrushabhdesai07/3DOD_thesis/data/kitti",
                                                 kitti_meta_path="/home/vrushabhdesai07/3DOD_thesis/data/kitti/meta",
                                                 NH=NH, sequence=sequence)

num_val_batches = int(len(val_dataset)/batch_size)

val_loader = torch.utils.data.DataLoader(dataset=val_dataset,
                                         batch_size=batch_size, shuffle=False,
                                         num_workers=16)
Beispiel #4
0
from datasets import DatasetKittiVal2ddetections, wrapToPi, getBinCenter  # (this needs to be imported before torch, because cv2 needs to be imported before torch for some reason)
from frustum_pointnet import FrustumPointNet

import torch
import torch.utils.data
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F

import numpy as np
import pickle

batch_size = 32

network = FrustumPointNet("Frustum-PointNet_eval_val_2ddetections",
                          project_dir="/root/3DOD_thesis")
network.load_state_dict(
    torch.load("/root/3DOD_thesis/pretrained_models/model_37_2_epoch_400.pth"))
network = network.cuda()

NH = network.BboxNet_network.NH

val_dataset = DatasetKittiVal2ddetections(
    kitti_data_path="/root/3DOD_thesis/data/kitti",
    kitti_meta_path="/root/3DOD_thesis/data/kitti/meta",
    NH=NH)

num_val_batches = int(len(val_dataset) / batch_size)

val_loader = torch.utils.data.DataLoader(dataset=val_dataset,
                                         batch_size=batch_size,
Beispiel #5
0
import torch
import torch.utils.data
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F

import numpy as np
import pickle
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt

batch_size = 32
network = FrustumPointNet("Frustum-PointNet_eval_val", project_dir="/home/vrushabhdesai07/3DOD_thesis")
network.load_state_dict(torch.load("/home/vrushabhdesai07/3DOD_thesis/training_logs/model_Frustum-PointNet_1/checkpoints/model_Frustum-PointNet_1_epoch_100.pth"))
network = network.cuda()

NH = network.BboxNet_network.NH

val_dataset = EvalDatasetFrustumPointNet(kitti_data_path="/home/vrushabhdesai07/3DOD_thesis/data/kitti",
                                         kitti_meta_path="/home/vrushabhdesai07/3DOD_thesis/data/kitti/meta",
                                         type="val", NH=NH)

num_val_batches = int(len(val_dataset)/batch_size)

val_loader = torch.utils.data.DataLoader(dataset=val_dataset,
                                         batch_size=batch_size, shuffle=False,
                                         num_workers=16)