def predict(X, kernelMeans, kernelSigma, kernelWeights): # vector prediction if(isinstance(X[0], list)): n = len(X) Yest = [] for i in range(n): Yest.append(ft.output(X[i], kernelMeans, kernelSigma, kernelWeights)) Yest = np.array(Yest) return Yest # scalar prediction else: return ft.output(X, kernelMeans, kernelSigma, kernelWeights)
def updateWeights(X, y, num_kernels, kernelMeans, kernelSigma, kernelWeights): # phase 2 B = np.identity(num_kernels) e = y - ft.output(X, kernelMeans, kernelSigma, kernelWeights) B, kernelSigma = ft.Phase2(X, y, e, num_kernels, B, kernelMeans, kernelSigma, kernelWeights) # phase 3 B = np.identity(num_kernels) e = y - ft.output(X, kernelMeans, kernelSigma, kernelWeights) B, kernelWeights = ft.Phase3(X, y, e, num_kernels, B, kernelMeans, kernelSigma, kernelWeights) return kernelMeans, kernelSigma, kernelWeights
def rolling_forecast(teX, teY, teYdate, num_kernels, kernelMeans, kernelSigma, kernelWeights, formatter, locater): """ model test, rolling forecast """ # forecast and update n = len(teX) Yest = [] for i in range(n): # forecast Yhat = ft.output(teX[i], kernelMeans, kernelSigma, kernelWeights) Yest.append(Yhat) # update kernelMeans, kernelSigma, kernelWeights = \ updateWeights(teX[i], teY[i], num_kernels, kernelMeans, kernelSigma, kernelWeights) # evaluate f = open('result.txt', 'w') err, rmse, rsq, mae = ft.loss_with_prediction_array(teY, Yest) print(format('rmse: %f, R2: %f, MAE: %f') % (rmse, rsq, mae)) f.write(format('rmse: %f, R2: %f, MAE: %f') % (rmse, rsq, mae) + '\n') """ plot """ dates = [datetime.datetime.strptime(d, "%Y-%m-%d").date() for d in teYdate] plt.gca().xaxis.set_major_formatter(formatter) plt.gca().xaxis.set_major_locator(locater) pre = teY - err plt.plot(dates, teY, 'r') plt.plot(dates, pre, 'b') plt.legend(["Test Data", "Prediction"]) plt.savefig("./kernel" + str(num_kernels) + "_prediction_graph.png") plt.show() f.close() return rmse, rsq, mae
def rolling_forecast(teX, teY, num_kernels, kernelMeans, kernelSigma, kernelWeights, loop): """ model test, rolling forecast """ # forecast and update n = len(teX) Yest = [] for i in range(n): # forecast Yhat = ft.output(teX[i], kernelMeans, kernelSigma, kernelWeights) Yest.append(Yhat) # update kernelMeans, kernelSigma, kernelWeights = \ updateWeights(teX[i], teY[i], num_kernels, kernelMeans, kernelSigma, kernelWeights, loop) # evaluate f = open('result.txt', 'w') err, rmse, rsq, mae = ft.loss_with_prediction_array(teY, Yest) print(format('rmse: %f, R2: %f, MAE: %f') % (rmse, rsq, mae)) f.write(format('rmse: %f, R2: %f, MAE: %f') % (rmse, rsq, mae) + '\n') # plot pre = teY - err plt.plot(teY, 'r') plt.plot(pre, 'b') plt.legend(["Test Data", "Prediction"]) plt.savefig("./kernel" + str(num_kernels) + "_prediction_graph.png") plt.show() f.close() return rmse, rsq, mae
def rolling_forecast(teX, teY, num_kernels, kernelMeans, kernelSigma, kernelWeights): """ model test, rolling forecast """ # forecast and update n = len(teX) Yest = [] for i in range(n): # forecast Yhat = ft.output(teX[i], kernelMeans, kernelSigma, kernelWeights) Yest.append(Yhat) # update kernelMeans, kernelSigma, kernelWeights = \ updateWeights(teX[i], teY[i], num_kernels, kernelMeans, kernelSigma, kernelWeights) # evaluate err, rmse, rsq, mae = ft.loss_with_prediction_array(teY, Yest) return Yest, rmse, rsq, mae
def predict(X, kernelMeans, kernelSigma, kernelWeights): n = len(X) Yest = [] for i in range(n): Yest.append(ft.output(X[i], kernelMeans, kernelSigma, kernelWeights)) return Yest
def train(trX, trY, teX, teY, epochs, num_kernels, kernelMeans, kernelSigma, kernelWeights): """model training""" log = open('./log.txt', 'w') ''' phase 2 & phase 3 learning kernel parameter ''' # init kernelMeans = kernelMeans[:num_kernels] kernelSigma = kernelSigma[:num_kernels] kernelWeights = kernelWeights[:num_kernels] # history epochs_arr = [] training_err = [] testing_err = [] min_err = sys.float_info.max best_kernelMeans = None best_kernelSigma = None best_kernelWeights = None best_epoch = None for epoch in range(1, epochs + 1): # phase 2 B = np.identity(num_kernels) for i in range(len(trX)): x = trX[i] y = trY[i] e = y - ft.output(x, kernelMeans, kernelSigma, kernelWeights) if i % 100 == 0: err, rmse, rsq, mae = ft.loss(trX, trY, kernelMeans, kernelSigma, kernelWeights) log.write( format('Phase 2 step rmse = %f, rsq = %f\n') % (rmse, rsq)) B, kernelSigma = ft.Phase2(x, y, e, num_kernels, B, kernelMeans, kernelSigma, kernelWeights) # phase 3 B = np.identity(num_kernels) for i in range(len(trX)): x = trX[i] y = trY[i] e = y - ft.output(x, kernelMeans, kernelSigma, kernelWeights) if i % 100 == 0: err, rmse, rsq, mae = ft.loss(trX, trY, kernelMeans, kernelSigma, kernelWeights) log.write( format('Phase 3 step rmse = %f, rsq = %f\n') % (rmse, rsq)) B, kernelWeights = ft.Phase3(x, y, e, num_kernels, B, kernelMeans, kernelSigma, kernelWeights) # check current epoch err, rmse, rsq, mae = ft.loss(trX, trY, kernelMeans, kernelSigma, kernelWeights) terr, trmse, trsq, trmae = ft.loss(teX, teY, kernelMeans, kernelSigma, kernelWeights) training_err.append(rmse) testing_err.append(trmse) epochs_arr.append(epoch) print("EPOCH {}: training rmse {}, test rmse {}".format( epoch, rmse, trmse)) # update kernel if it is best # metric is rmse if (trmse < min_err): min_err = trmse best_epoch = epoch best_kernelMeans = kernelMeans best_kernelSigma = kernelSigma best_kernelWeights = kernelWeights print("EPOCH {} selected.".format(best_epoch)) plt.plot(epochs_arr, testing_err) plt.savefig("./kernel" + str(num_kernels) + "_training_graph.png") plt.show() log.close() return num_kernels, best_kernelMeans, best_kernelSigma, best_kernelWeights
def train(data, trX, trY, teX, teY, te_index, epochs, num_kernels, kernelMeans, kernelSigma, kernelWeights, tau, E, P, target_P, mode): """model training""" log = open('./log.txt', 'w') ''' phase 2 & phase 3 learning kernel parameter ''' # init kernelMeans = kernelMeans[:num_kernels] kernelSigma = kernelSigma[:num_kernels] kernelWeights = kernelWeights[:num_kernels] # history epochs_arr = [] training_err = [] testing_err = [] max_rsq = 0 best_kernelMeans = None best_kernelSigma = None best_kernelWeights = None best_epoch = None best_Yest = None f = open('result.txt', 'w') for epoch in range(1, epochs + 1): # phase 2 B = np.identity(num_kernels) for i in range(len(trX)): x = trX[i] y = trY[i] e = y - ft.output(x, kernelMeans, kernelSigma, kernelWeights) if i % 100 == 0: err, rmse, rsq, mae = ft.loss(trX, trY, kernelMeans, kernelSigma, kernelWeights) log.write( format('Phase 2 step rmse = %f, rsq = %f\n') % (rmse, rsq)) B, kernelSigma = ft.Phase2(x, y, e, num_kernels, B, kernelMeans, kernelSigma, kernelWeights) # phase 3 B = np.identity(num_kernels) for i in range(len(trX)): x = trX[i] y = trY[i] e = y - ft.output(x, kernelMeans, kernelSigma, kernelWeights) if i % 100 == 0: err, rmse, rsq, mae = ft.loss(trX, trY, kernelMeans, kernelSigma, kernelWeights) log.write( format('Phase 3 step rmse = %f, rsq = %f\n') % (rmse, rsq)) B, kernelWeights = ft.Phase3(x, y, e, num_kernels, B, kernelMeans, kernelSigma, kernelWeights) err, rmse, rsq, mae = ft.loss(trX, trY, kernelMeans, kernelSigma, kernelWeights) terr, trmse, trsq, trmae = ft.loss(teX, teY, kernelMeans, kernelSigma, kernelWeights) print("EPOCH {}: training r2 {}, test r2 {}".format(epoch, rsq, trsq)) if epoch == 1: max_rsq = trsq best_epoch = epoch best_kernelMeans = kernelMeans best_kernelSigma = kernelSigma best_kernelWeights = kernelWeights # check epoch 75 150 300 if epoch == 75 or epoch == 150 or epoch == 300: Yest, termse, tersq, temae = evaluate(data, teX, teY, te_index, kernelMeans, kernelSigma, kernelWeights, tau, E, P, target_P, mode) print("Evaluation {}: rmse {} r2 {},MAE {}".format( epoch, termse, tersq, temae)) f.write( format('epoch : %d, rmse: %f, R2: %f, MAE: %f') % (epoch, termse, tersq, temae) + '\n') # update kernel if it is best # metric is rsq if (tersq > max_rsq): max_rsq = tersq best_Yest = Yest best_epoch = epoch best_kernelMeans = kernelMeans best_kernelSigma = kernelSigma best_kernelWeights = kernelWeights f.close() print("EPOCH {} selected.".format(best_epoch)) log.close() return best_Yest, num_kernels, best_kernelMeans, best_kernelSigma, best_kernelWeights, best_epoch
def GKFN(trX, trY, teX, teY, alpha, loop, Kernel_Num): """model training""" #initial model parameter m = 0 # kernelnumber kernelMeans = None kernelSigma = None kernelWeights = None invPSI = None #initial kernel recruiting #첫번쨰 커널, 두번째 커널: y값이 가장 큰 index와 가장 작은 index idx1 = np.argmax(trY) x1 = trX[idx1] y1 = trY[idx1] e1 = y1 idx2 = np.argmin(trY) x2 = trX[idx2] y2 = trY[idx2] e2 = y2 m += 2 kernelWeights = np.array([e1, e2]) kernelMeans = np.array([x1, x2]) dist = np.sqrt(np.sum(np.square(x1 - x2))) #x1,x2사이 거리 sig1, sig2 = alpha * dist, alpha * dist kernelSigma = np.array([sig1, sig2]) initial_PSI = None initial_PSI = np.ndarray(shape=(2, 2)) initial_PSI[0][0] = ft.GaussianKernel(x1, kernelMeans[0], sig1) initial_PSI[0][1] = ft.GaussianKernel(x1, kernelMeans[1], sig2) initial_PSI[1][0] = ft.GaussianKernel(x2, kernelMeans[0], sig1) initial_PSI[1][1] = ft.GaussianKernel(x2, kernelMeans[1], sig2) invPSI = lin.inv(initial_PSI) init_y = np.array([y1, y2]) kernelWeights = np.matmul(invPSI, init_y) #Phase 1 estv = ft.EstimatedNoiseVariance(trY) # print(np.sqrt(estv)) trainerr = [] validerr = [] # 커널 수를 늘려가며 학습을 합니다. while (True): err, rmse, rsq = ft.loss(trX, trY, kernelMeans, kernelSigma, kernelWeights) # verr, vrmse, vrsq = ft.loss(vaX, vaY, kernelMeans, kernelSigma, kernelWeights) # print(format('train: Phase1 : m = %d, rmse = %f, rsq = %f \nvalidation Phase1 : m = %d, rmse = %f, rsq = %f') % (m, rmse, rsq, m, vrmse, vrsq)) trainerr.append(rmse) # validerr.append(vrmse) if m > Kernel_Num: break # if (rmse**2) < estv: # break # if rsq > 0.9: # break ## if np.abs(temp-rsq) < 1e-5: # break # # temp = rsq if m % 10 == 0: print(m) idx = np.argmax(np.abs(err), axis=0) x = trX[idx] y = trY[idx] e = err[idx] m, kernelMeans, kernelSigma, kernelWeights, invPSI = ft.Phase1( x, y, e, m, alpha, kernelMeans, kernelSigma, kernelWeights, invPSI) # # 커널수에 따른 에러 # plt.plot(trainerr,'r') # plt.plot(validerr,'b') # plt.xticks(np.arange(0,100,5)) #x축 눈금 # plt.show() # 커널 몇개를 할것인가? m = Kernel_Num kernelMeans = kernelMeans[:m] kernelSigma = kernelSigma[:m] kernelWeights = kernelWeights[:m] #Phase 2 & Phase3 : kernel parameter 학습 for i in range(loop): B = None B = np.identity(m) for i in range(len(trX)): x = trX[i] y = trY[i] e = y - ft.output(x, kernelMeans, kernelSigma, kernelWeights) if i % 100 == 0: err, rmse, rsq = ft.loss(trX, trY, kernelMeans, kernelSigma, kernelWeights) print(format('Phase 2 step rmse = %f, rsq = %f') % (rmse, rsq)) B, kernelSigma = ft.Phase2(x, y, e, m, B, kernelMeans, kernelSigma, kernelWeights) B = None B = np.identity(m) for i in range(len(trX)): x = trX[i] y = trY[i] e = y - ft.output(x, kernelMeans, kernelSigma, kernelWeights) if i % 100 == 0: err, rmse, rsq = ft.loss(trX, trY, kernelMeans, kernelSigma, kernelWeights) print(format('Phase 3 step rmse = %f, rsq = %f') % (rmse, rsq)) B, kernelWeights = ft.Phase3(x, y, e, m, B, kernelMeans, kernelSigma, kernelWeights) """model test""" err, rmse, rsq = ft.loss(teX, teY, kernelMeans, kernelSigma, kernelWeights) print(format('rmse: %f, R2: %f') % (rmse, rsq)) #pre = teY - err #plt.plot(teY,'r') #plt.plot(pre,'b') #plt.show() return rmse, rsq