fitness = PlusMinusFitness(args.selection_coef)

pop = sim.Population(size=[args.popsize] * npops,
                     loci=[args.nloci, 2],
                     lociPos=locus_position + [0, args.length],
                     infoFields=['ind_id', 'fitness', 'migrate_to'])

id_tagger = sim.IdTagger()
id_tagger.apply(pop)

# record recombinations
rc = RecombCollector(first_gen=pop.indInfo("ind_id"),
                     ancestor_age=args.ancestor_age,
                     length=2 * args.length,
                     locus_position=locus_position +
                     [args.length, 2 * args.length])

migr_mat = [[0, args.m, 0], [args.m, 0, args.M], [0, args.M, 0]]

pop.evolve(initOps=[
    sim.InitSex(),
] + init_geno,
           preOps=[
               sim.PyOperator(lambda pop: rc.increment_time() or True),
               sim.Migrator(rate=migr_mat, mode=sim.BY_PROBABILITY),
               sim.SNPMutator(u=args.sel_mut_rate, v=args.sel_mut_rate),
               sim.PyMlSelector(fitness.left,
                                subPops=fitness.left_subpops,
                                output=">>" + selloci_file),
Beispiel #2
0
        size=[args.popsize]*npops, 
        loci=[args.nloci], 
        lociPos=locus_position,
        infoFields=['ind_id','fitness','migrate_to'])

id_tagger = sim.IdTagger()
id_tagger.apply(pop)

# set up recomb collector
first_gen = pop.indInfo("ind_id")
init_ts = msprime.simulate(2*len(first_gen),
                           length=max(locus_position))
haploid_labels = [(k,p) for k in first_gen 
                        for p in (0,1)]
node_ids = {x:j for x, j in zip(haploid_labels, init_ts.samples())}
rc = RecombCollector(ts=init_ts, node_ids=node_ids,
                     locus_position=locus_position)

if min(args.gridheight,args.gridwidth)==1:
    migr_rates=migrSteppingStoneRates(
        args.migr, n=max(args.gridwidth,args.gridheight), circular=False)
else:
    migr_rates=migr2DSteppingStoneRates(
        args.migr, m=args.gridwidth, n=args.gridheight, diagonal=False, circular=False)

pop.evolve(
    initOps=[
        sim.InitSex(),
    ]+init_geno,
    preOps=[
        sim.PyOperator(lambda pop: rc.increment_time() or True),
        sim.Migrator(
Beispiel #3
0
id_tagger = sim.IdTagger()
id_tagger.apply(pop)

# set up recomb collector
# NB: we have to simulate an initial tree sequence
first_gen = pop.indInfo("ind_id")
init_ts = msprime.simulate(2 * len(first_gen),
                           Ne=args.popsize,
                           recombination_rate=args.recomb_rate / 2.0,
                           length=max(locus_position))
haploid_labels = [(k, p) for k in first_gen for p in (0, 1)]
node_ids = {x: j for x, j in zip(haploid_labels, init_ts.samples())}
rc = RecombCollector(ts=init_ts,
                     node_ids=node_ids,
                     locus_position=locus_position,
                     benchmark=True,
                     mode='binary')
pre_ops = [sim.PyOperator(lambda pop: rc.increment_time() or True)]
mating_ops = [id_tagger]

logfile.write(time.strftime('%X %x %Z') + "\n")
logfile.write("Started simulating! Generations:\n")
post_ops = [sim.PyEval(r'"  %d\n" % (gen)', step=100, output=logfile)]

nselloci = int(args.sel_mut_rate / (args.mut_rate + args.sel_mut_rate))
selected_loci = random.sample(locus_position, nselloci)
neutral_loci = list(set(locus_position) - set(selected_loci))
if args.record_neutral:
    pre_ops += [
        sim.SNPMutator(u=args.mut_rate, v=args.mut_rate, loci=neutral_loci)
Beispiel #4
0
# initially polymorphic alleles
init_freqs=[[k/100,1-k/100,0,0] for k in range(1,11)]
locus_classes=[min(len(init_freqs)-1,math.floor(random.expovariate(1))) for k in range(nloci)]
init_classes=[list(filter(lambda k: locus_classes[k]==x,range(nloci))) for x in range(len(init_freqs))]

logfile.write("Locus positions:\n")
logfile.write(str(locus_position)+"\n")
logfile.write("----------\n")
logfile.flush()


init_geno=[sim.InitGenotype(freq=init_freqs[k],loci=init_classes[k]) for k in range(len(init_freqs))]

# record recombinations
rc = RecombCollector(
        nsamples=nsamples, generations=generations, N=popsize*npops,
        ancestor_age=ancestor_age, length=length, locus_position=locus_position)

id_tagger = sim.IdTagger()
id_tagger.apply(pop)

# record recombinations
rc = RecombCollector(
        first_gen=pop.indInfo("ind_id"), ancestor_age=args.ancestor_age, 
                              length=args.length, locus_position=locus_position)
###
# modified from http://simupop.sourceforge.net/manual_svn/build/userGuide_ch5_sec9.html

class FixedFitness:
    def __init__(self,s):
        self.s = s
Beispiel #5
0
    min(len(init_freqs) - 1, math.floor(random.expovariate(1)))
    for k in range(args.nselloci)
]
init_classes = [
    list(filter(lambda k: locus_classes[k] == x, range(args.nselloci)))
    for x in range(len(init_freqs))
]
init_geno = [
    sim.InitGenotype(freq=init_freqs[k], loci=init_classes[k])
    for k in range(len(init_freqs))
]

# record recombinations
rc = RecombCollector(nsamples=args.nsamples,
                     generations=args.generations,
                     N=args.popsize,
                     ancestor_age=args.ancestor_age,
                     length=args.nselloci,
                     locus_position=locus_position)

###
# random selection coefficients:
# modified from http://simupop.sourceforge.net/manual_svn/build/userGuide_ch5_sec9.html


class GammaDistributedFitness:
    def __init__(self, alpha, beta):
        # mean is alpha/beta
        self.coefMap = {}
        self.alpha = alpha
        self.beta = beta