Beispiel #1
0
import numpy as np
import functions as f

# ---------- MAIN --------------
if __name__ == "__main__":

    # Grid
    domain = np.matrix([[-3, 1, -5, 0, 19], [6, 3, 8, 9, 10],
                        [5, -8, 4, 1, -8], [6, -9, 4, 19, -5],
                        [-20, -17, -4, -3, 9]])

    # Initial state
    init = (3, 0)

    # Discount factor
    gamma = 0.99

    # Deterministic: stocha = False; Stochastic: stocha = True
    stocha = True

    ht = f.trajectory(domain, init, stocha, 10)
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# The aim of this program is to illustrate one possible strategy for making sure you can reproduce simulation results.

import numpy as np
from functions import rk4, trajectory


# RHS of ODE
def f(x, t):
    return -0.1 * x


# Define parameters (typically these would come from the command line, or a file, or something)
T0 = 0
Tmax = 100
X0 = 10

# Run for a few different timesteps
for dt in [0.01, 0.1, 1]:
    # Run simulation
    X, T = trajectory(X0, T0, Tmax, dt, f, rk4)
    # Merge results into one array
    # (more convenient with a single file in this case)
    results = np.array((X, T))

    # Save results with informative filename
    outputfilename = f'results_Tmax={Tmax}_dt={dt}_X0={X0}.npy'
    np.save(outputfilename, results)
Beispiel #3
0
def convergence_plot(stocha):
    # Lengths of the trajectories
    N = [50, 100, 500, 1000, 10000, 50000, 100000, 2000000]

    conv_r = np.zeros((len(N)))
    conv_p = np.zeros((len(N)))

    for i in range(len(N)):
        ht = f.trajectory(domain, init, stocha,
                          N[i])  # trajectory of size N[i]

        r_hat_values, p_hat_values = f.compute_r_hat_p_hat_values(
            ht, domain, stocha)
        r_values, p_values = f.compute_r_p_values(domain, stocha)

        diff_r = abs(r_values - r_hat_values)
        diff_p = abs(p_values - p_hat_values)

        conv_r[i] = diff_r.max()
        conv_p[i] = diff_p.max()

    # ------- ||r - r^||_inf ---------
    fig, (ax, ax2) = plt.subplots(1, 2, sharey=True)

    # plot the same data on both axes
    ax.plot(N, conv_r, marker='o')
    ax2.plot(N, conv_r, marker='o', label='||r - r^||_inf')

    # zoom-in / limit the view to different portions of the data
    ax.set_xlim(0, 11000)
    ax2.set_xlim(1000000, 2200000)

    # hide the spines between ax and ax2
    ax.spines['right'].set_visible(False)
    ax2.spines['left'].set_visible(False)
    ax.yaxis.tick_left()
    ax2.yaxis.tick_right()

    # Make the spacing between the two axes a bit smaller
    plt.subplots_adjust(wspace=0.15)
    legend = ax2.legend()
    legend.get_frame().set_alpha(0.5)

    plt.show()

    # ------- ||p - p^||_inf ---------
    fig, (ax, ax2) = plt.subplots(1, 2, sharey=True)

    # plot the same data on both axes
    ax.plot(N, conv_p, 'r', marker='o')
    ax2.plot(N, conv_p, 'r', marker='o', label='||p - p^||_inf')

    # zoom-in / limit the view to different portions of the data
    ax.set_xlim(0, 11000)
    ax2.set_xlim(1000000, 2200000)

    # hide the spines between ax and ax2
    ax.spines['right'].set_visible(False)
    ax2.spines['left'].set_visible(False)
    ax.yaxis.tick_left()
    ax2.yaxis.tick_right()

    # Make the spacing between the two axes a bit smaller
    plt.subplots_adjust(wspace=0.15)
    legend = ax2.legend()
    legend.get_frame().set_alpha(0.5)

    plt.show()