def run(): limit = 10 collection = generate_collections() fuzzy = Fuzzy(collection) print(fuzzy) while True: search = input("> ") if not search: return start_time = time.time() result = fuzzy.search(search) has_more = len(result) - limit if has_more == 1: limit += 1 print("\"%s\" [%s of %s results (%.6f seconds)]" % ( search, min(limit, len(result)), len(result), time.time() - start_time )) result = result[:limit] for text in result: print("%s[%8.2f] %s" % ( " " * 2, text[0], format_text(text[1], text[2]) )) if has_more > 1: print(" " * 2 + "...")
def getCalculation(): maximumImplicant = Fuzzy.getDefuzyfikasi() denomi = Fuzzy.getDenoNomi() data = {'rules' : Fuzzy.listOfUsedRule,'insideTempMember':Fuzzy.getInsideTemp(), 'outsideTempMember':Fuzzy.getOutsideTemp(),'peopleMember':Fuzzy.getPeople(), "detail":Fuzzy.getLinguisticValue(),"maximum-Implicant":maximumImplicant,"defuzifikasi":denomi} return jsonify(data),200
def algo_fuzzy(links, channels): """ @param links @param channels """ # a_link is the link. NOT USED IN ALGO_FUZZY #::TODO:: english # INFORMACOES DISPONIVEIS: # - taxa ocupacao canal n pelo US # - taxa ocupacao canal n pelo US # - canais livres # - BER # channel_pu_presence = [] channel_su_presence = [] for ch in channels: pu_occ = globs.p_up_occ_count[ch] pu_total = globs.p_up_occ_count[ch] + globs.p_up_idle_count[ch] channel_pu_presence.append(100.0 * pu_occ / float(pu_total) if pu_total > 0 else 0) su_occ = globs.p_channels_count[ch] su_total = globs.p_total_iterations channel_su_presence.append(100.0 * su_occ / float(su_total) if su_total > 0 else 0) rewards = Fuzzy.full_process(channel_pu_presence, channel_su_presence) # map {ch1: reward, ch2: reward} valid_reward = {} for i in channels: valid_reward[i] = rewards.pop(0) # get higher rewards ret = {} for l in links: if valid_reward: # Search highest reward v_cur = -1 k_cur = -1 for k, v in valid_reward.iteritems(): if v > v_cur: k_cur = k v_cur = v # remove item from valid_rewards if k_cur > -1: ret[l] = k_cur del valid_reward[k_cur] return ret
def __init__(self, params, yaw = Fuzzy(mf_types, f_ssets)): '''Initialize some variables''' Controller.__init__(self,params) self.heading_angle = 0 self.yaw = yaw
from fuzzy import Fuzzy a = Fuzzy(0.7) b = Fuzzy(0.4) if not a: print('ERROR : in line 7 a should be true') if b: print('ERROR : in line 10 b should be false') Fuzzy.set_truth_threshold(3) if Fuzzy.TRUTH_TRESHOLD > 1.0: print('ERROR : thrut treshold set above 1') Fuzzy.set_truth_threshold(0.3) if not b: print('ERROR : in line 10 b should be true') c = Fuzzy(23) if c > 1.0: print('ERROR : thrut value set above 1') if -a != 0.3: print('ERROR: negation is incorrect ({})'.format(-a)) if (a | b) != 0.7: print('ERROR: alternative is incorrect ({})'.format(a | b)) if a & b != 0.4: print('ERROR: conjunction is incorrect ({})'.format(a & b))
def start(self, quandoTermina): if self.pb: self.pb.show() i = 0 while (i<len(self.listaDeArquivos)): arquivo = self.listaDeArquivos[i] label = str(str(arquivo).split('/')[-1]) im3 = Image.open(str(arquivo)) # Filtro 1 { Protan } if self.pb: self.pb.setLabel('[1/6] Aplicando filtro Protan em ' + str(label)) filtro1 = FiltroDeImagem(debug=False) filtro1.carregarImg(str(arquivo)) filtro1.callBackPogresso(self.percentagem) im1 = filtro1.filtrarProtan(equalizar = self.equalizar, lms = self.lms) # Filtro 2 { Deutan } if self.pb: self.pb.setLabel('[2/6] Aplicando filtro Deutan em ' + str(label)) filtro2 = FiltroDeImagem(debug=False) filtro2.carregarImg(str(arquivo)) filtro2.callBackPogresso(self.percentagem) im2 = filtro2.filtrarDeutan(equalizar = self.equalizar, lms = self.lms) # Fuzzy 1 fuz1 = Fuzzy(False,self.p,self.de,self.da,self.n) if self.pb: self.pb.setLabel('[3/6] Aplicando filtro Fuzzy 1 em ' + str(label)) fuz1.callBackProgresso(self.percentagem) im1 = fuz1.multiplicaProtan(im1) # Fuzzy 2 #fuz2 = Fuzzy(False,self.p,self.de,self.da,self.n) if self.pb: self.pb.setLabel('[4/6] Aplicando filtro Fuzzy 2 em ' + str(label)) fuz1.callBackProgresso(self.percentagem) im2 = fuz1.multiplicaDeutan(im2) if self.pb: self.pb.setLabel('[5/6] Aplicando filtro Fuzzy 3 em ' + str(label)) fuz1.callBackProgresso(self.percentagem) im3 = fuz1.multiplicaNormal(im3) # Soma da matrizes if self.pb: self.pb.setLabel('[6/6] Aplicando soma de matrizes em ' + str(label)) fuz1.callBackProgresso(self.percentagem) im4 = Image.open(str(arquivo)) im4 = fuz1.soma(im1, im2, im3, im4) im4.save("default_output/" + str(i) + ".bmp", "BMP") self.resultado.append((label, str(arquivo), "default_output/" + str(i) + ".bmp")) i = i + 1 #quandoTermina(self.resultado) #self.pb.hide() return self.resultado
from rupiah import Rupiah from fuzzy import Fuzzy masaKerja = int(input("Masukkan lama masa kerja (tahun): ")) produkTerjual = int(input("Masukkan banyak barang terjual (unit): ")) fuzz = Fuzzy(masaKerja, produkTerjual) bonus = Rupiah(fuzz.hitungBonus()) nilai_z = Rupiah(fuzz.nilai_z) print("> Masa Kerja:", "{} Tahun".format(masaKerja), "| {}".format(fuzz.displayMasaKerja())) print("> Produk Terjual:", "{} Unit".format(produkTerjual), "| {}".format(fuzz.displayProdukTerjual())) print("> Bonus Penjualan:", fuzz.displayBonus()) print("----------------------------------") print(">> Total Bonus: {}".format(bonus.konversi()), "<<") print("----------------------------------")
def initialize(self, article): similarity_array = [] # similarity_array.append(article) test = self.articleSummerization(article, 1) # in one line # for i in summerizedSentence: # test=str(i) print('-------Summerized Title-------') print(test) sitesContainingArticle, scrapId = self.googleSearch(article) print('sites_length_after_google search', len(sitesContainingArticle)) for index, url in enumerate(sitesContainingArticle): print('URL ', url, scrapId[index], '\n') raw_html = self.simple_get(url) #full page site content try: soup = BeautifulSoup( raw_html, 'html.parser') #proper formattinh raw_html # print('hua idhar') # print(soup) except Exception as e: print(e) return 0, [] _ = [s.extract() for s in soup('script')] soup_article = soup.find_all('div', {"class": scrapId[index]}) # print(soup_article) article_string = '' for data in soup_article: # print(data) article_string += data.text # article_string += data.text # print(article_string) if not article_string == '': # print('aaya\n') similarity_array.append( self.articleSummerization(article_string, 5)) else: print('nahi aaya\n') pass # for c in similarity_array: # print('\n\n\n',c) mylsa = LSA() wmdinit = WordMoverDistance() length = len(similarity_array) # print(length) if length == 0: return 0, sitesContainingArticle else: count = 0 score_array = [] while (count < length): print('\n\n', similarity_array[count]) lsa_similarity = mylsa.start([article + ' ' + article] + similarity_array, count + 1) wmdinit.data_accept(similarity_array[count], article) wmddistance = wmdinit.model() print('wordmover distance is', wmddistance) fuzzy = Fuzzy(lsa_similarity, wmddistance) score = fuzzy.get_score_data() # score = score/10 print('final score ', score) score_array.append(score) count = count + 1 score_array = sorted(score_array, key=lambda x: x, reverse=True) return min(100, np.around(sum(score_array[:2]), decimals=2) * 100), sitesContainingArticle # wmdinit=wordmover.WordMoverDistance(titles[count],titles[0]) # wmddistance=wmdinit.model()
def getAcTemp(): data = request.get_json() Fuzzy.valueIinitialization(data['insideTemp'],data['outsideTemp'],data['people']) bestTemp = Fuzzy.inferensi() return jsonify({'OptimalTemperature': bestTemp}),200