lam = 532e-9 * switch_lam
theta_t = 1.5 * np.pi / 180
gamma_m = 1.40e9 / switch_lam  # molecular signal spectral width
gamma_a = 50e6 / switch_lam  # aerosol signal spectral width
fopd = 0.15 * switch_lam
t_ref = 20
t = 20
p = 1
f = 0.1

h1 = Copper(fopd, theta_t, gamma_m, gamma_a, lam, t, t_ref, p, d_opd_d_t=lam / 5, glass=LITHOSIL_Q)
n_rms = 30
theta_d = 0.002
rms = np.linspace(0, 0.2, n_rms) * lam

t_m = np.zeros(n_rms)
t_a = np.zeros(n_rms)
sdr = np.zeros(n_rms)
for i in range(n_rms):
    t_m[i] = h1.overall_transmittance(theta_d, f, h1.gamma_m, h1.fsr(fopd), rms[i])
    t_a[i] = h1.overall_transmittance(theta_d, f, h1.gamma_a, h1.fsr(fopd), rms[i])
    sdr[i] = t_m[i] / t_a[i]

fig, ax = plt.subplots()
ax.plot(rms / lam, sdr, color='black')
ax.grid(True)
ax.set_xlabel(r"Wavefront Error ($\lambda$)")
ax.set_ylabel(r"SDR")
ax.set_title("SDR v. RMS Wavefront Error")
plt.show()
t_m = np.zeros(n_T)
t_a = np.zeros(n_T)
sdr = np.zeros(n_T)
fsrs = np.zeros(n_T)
opds = np.zeros(n_T)
theta_t_0 = theta_t
for i in range(n_T):
    n1 = h1.generate_n_glass(h1.t + d_T[i])
    d1 = h1.d_glass_thermal_expansion(h1.t + d_T[i])
    print('glass', 2 * (h1.d_glass * h1.n_glass - n1 * d1) / lam)
    n2 = h1.generate_n_air(h1.t + d_T[i])
    d2 = h1.d_air_thermal_expansion(h1.t + d_T[i])
    print('air', 2 * (h1.n_air * h1.d_air - n2 * d2) / lam)
    opd = h1.opd_exact_pure(theta_t, n1, d1, n2, d2)
    opds[i] = opd
    fsrs[i] = h1.fsr(opd)
    t_m[i] = h1.overall_transmittance(theta_d, f, h1.gamma_m, h1.fsr(opd))
    t_a[i] = h1.overall_transmittance(theta_d, f, h1.gamma_a, h1.fsr(opd))
    sdr[i] = t_m[i] / t_a[i]

fig, ax = plt.subplots()
# ax.plot(d_T, t_a, color='black')
ax.plot(d_T, sdr, color='black')
# ax.plot(d_T, (opds - fopd) / lam, color='black')
# ax.plot(d_d1 * 1000, fsrs, color='black')
# ax.set_ylim([0, 400])
ax.grid(True)
ax.set_xlabel(r"$\Delta\theta_t$ (degrees)")
ax.set_ylabel(r"SDR")
ax.set_title("SDR v. Tilt Angle Variation")
ax.text(
Beispiel #3
0
theta_t = 1.5 * np.pi / 180
gamma_m = 1.40e9 / switch_lam  # molecular signal spectral width
gamma_a = 50e6 / switch_lam  # aerosol signal spectral width
fopd = 0.15 * switch_lam
t_ref = 20
t = 20
p = 1
f = 0.1

h1 = Copper(fopd, theta_t, gamma_m, gamma_a, lam, t, t_ref, p, d_opd_d_t=lam / 5, glass=LITHOSIL_Q)
n_nu = 100
theta_d = 0.002
d_nu = np.linspace(0.01e9, 0.1e9, n_nu)

t_m = np.zeros(n_nu)
t_a = np.zeros(n_nu)
sdr = np.zeros(n_nu)
opd = h1.opd_exact_pure(theta_t, h1.n_glass, h1.d_glass, h1.n_air, h1.d_air)
for i in range(n_nu):
    t_m[i] = h1.overall_transmittance(theta_d, f, h1.gamma_m, h1.fsr(opd), phase_dev=d_nu[i])
    t_a[i] = h1.overall_transmittance(theta_d, f, h1.gamma_a, h1.fsr(opd), phase_dev=d_nu[i])
    sdr[i] = t_m[i] / t_a[i]

fig, ax = plt.subplots()
ax.plot(d_nu / 1e9, sdr, color='black')
ax.grid(True)
ax.set_xlabel(r"Locking Error (GHz)")
ax.set_ylabel(r"SDR")
ax.set_title("SDR v. Locking Error")
plt.show()