sp3d = Ga('e_r,e_th,e_ph', g=[1, r**2, r**2*sin(th)**2], coords=coords) (er, eth, ephi) = sp3d.mv() #Define coordinates for 2-d (u,v) and 1-d (s) manifolds u,v,s,alpha = symbols('u v s alpha',real=True) sub_coords = (u,v) smap = [1, u, v] # Coordinate map for sphere of r = 1 in 3-d print r'(u,v)\rightarrow (r,\theta,\phi) = ',smap #Define unit sphere manifold sph2d = sp3d.sm(smap,sub_coords) print '#Unit Sphere Manifold:' print 'g =',sph2d.g (eu,ev) = sph2d.mv() #Define vector and vector field on unit sphere tangent space a = sph2d.mv('a','vector') b = sph2d.mv('b','vector') c = sph2d.mv('c','vector') f = sph2d.mv('f','vector',f=True) print 'a =', a
from sympy import symbols, sin, pi, latex from ga import Ga from printer import Format, xpdf Format() coords = (r, th, phi) = symbols('r,theta,phi', real=True) sp3d = Ga('e_r e_th e_ph', g=[1, r**2, r**2*sin(th)**2],\ coords=coords, norm=True) sph_uv = (u, v) = symbols('u,v', real=True) sph_map = [1, u, v] # Coordinate map for sphere of r = 1 sph2d = sp3d.sm(sph_map, sph_uv) print(r'(u,v)\rightarrow (r,\theta,\phi) = ', latex(sph_map)) print('g =', latex(sph2d.g)) F = sph2d.mv('F', 'vector', f=True) #scalar function f = sph2d.mv('f', 'scalar', f=True) #vector function print(r'\nabla f =', sph2d.grad * f) print('F =', F) print(r'\nabla F = ', sph2d.grad * F) cir_s = s = symbols('s', real=True) cir_map = [pi / 8, s] cir1d = sph2d.sm(cir_map, (cir_s, )) print('g =', latex(cir1d.g)) h = cir1d.mv('h', 'scalar', f=True) H = cir1d.mv('H', 'vector', f=True) print(r'(s)\rightarrow (u,v) = ', latex(cir_map)) print('H =', H) print(latex(H))
sp3d = Ga('e_r,e_th,e_ph', g=[1, r**2, r**2 * sin(th)**2], coords=coords) (er, eth, ephi) = sp3d.mv() #Define coordinates for 2-d (u,v) and 1-d (s) manifolds u, v, s, alpha = symbols('u v s alpha', real=True) sub_coords = (u, v) smap = [1, u, v] # Coordinate map for sphere of r = 1 in 3-d print r'(u,v)\rightarrow (r,\theta,\phi) = ', smap #Define unit sphere manifold sph2d = sp3d.sm(smap, sub_coords) print '#Unit Sphere Manifold:' print 'g =', sph2d.g (eu, ev) = sph2d.mv() #Define vector and vector field on unit sphere tangent space a = sph2d.mv('a', 'vector') b = sph2d.mv('b', 'vector') c = sph2d.mv('c', 'vector') f = sph2d.mv('f', 'vector', f=True) print 'a =', a
from sympy import symbols, sin, pi, latex from ga import Ga from printer import Format, xpdf Format() coords = (r, th, phi) = symbols('r,theta,phi', real=True) sp3d = Ga('e_r e_th e_ph', g=[1, r**2, r**2*sin(th)**2], coords=coords, norm=True) sph_uv = (u, v) = symbols('u,v', real=True) sph_map = [1, u, v] # Coordinate map for sphere of r = 1 sph2d = sp3d.sm(sph_map,sph_uv) print r'(u,v)\rightarrow (r,\theta,\phi) = ',latex(sph_map) print 'g =',latex(sph2d.g) F = sph2d.mv('F','vector',f=True) #scalar function f = sph2d.mv('f','scalar',f=True) #vector function print r'\nabla f =',sph2d.grad * f print 'F =',F print r'\nabla F = ',sph2d.grad * F cir_s = s = symbols('s',real=True) cir_map = [pi/8,s] cir1d = sph2d.sm(cir_map,(cir_s,)) print 'g =',latex(cir1d.g) h = cir1d.mv('h','scalar',f=True) H = cir1d.mv('H','vector',f=True) print r'(s)\rightarrow (u,v) = ',latex(cir_map) print 'H =', H print latex(H) print r'\nabla h =', cir1d.grad * h